Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process
The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We als...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-11, Vol.10 (11), p.4328-4334 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4334 |
---|---|
container_issue | 11 |
container_start_page | 4328 |
container_title | Nano letters |
container_volume | 10 |
creator | Li, Xuesong Magnuson, Carl W Venugopal, Archana An, Jinho Suk, Ji Won Han, Boyang Borysiak, Mark Cai, Weiwei Velamakanni, Aruna Zhu, Yanwu Fu, Lianfeng Vogel, Eric M Voelkl, Edgar Colombo, Luigi Ruoff, Rodney S |
description | The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16 000 cm2 V−1 s−1 at room temperature. |
doi_str_mv | 10.1021/nl101629g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_763471511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>763471511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-9008798adf4cb8702848fb754c2d626d045ebff60acc8229f8bca3762a21b4a93</originalsourceid><addsrcrecordid>eNpt0EFLwzAUwPEgitPpwS8guYh4qCZp2iZH2dwUBgrbvJbXLN0y2qYmLWN-eiub28VT3uHHe-GP0A0lj5Qw-lQVlNCYyeUJuqBRSIJYSnZ6mAXvoUvv14QQGUbkHPUYkVEiRXSB5mMH9UpXGo9MUXq8Mc0KT8AtNR7aEkyFp-Zb42yLAc82Npg2usaDlS6NggJ_Qm0dHuraetMYW-EPZ5X2_gqd5VB4fb1_-2g-epkNXoPJ-_ht8DwJIOS8CSQhovsGLHKuMpEQJrjIsyTiii1iFi8Ij3SW5zEBpQRjMheZgjCJGTCacZBhH93v9tbOfrXaN2lpvNJFAZW2rU-TOOQJjSjt5MNOKme9dzpPa2dKcNuUkvQ3YnqI2Nnb_dY2K_XiIP-qdeBuD8B3GXIHlTL-6EJOpRTJ0YHy6dq2rupi_HPwB4R3hEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763471511</pqid></control><display><type>article</type><title>Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process</title><source>ACS Publications</source><source>MEDLINE</source><creator>Li, Xuesong ; Magnuson, Carl W ; Venugopal, Archana ; An, Jinho ; Suk, Ji Won ; Han, Boyang ; Borysiak, Mark ; Cai, Weiwei ; Velamakanni, Aruna ; Zhu, Yanwu ; Fu, Lianfeng ; Vogel, Eric M ; Voelkl, Edgar ; Colombo, Luigi ; Ruoff, Rodney S</creator><creatorcontrib>Li, Xuesong ; Magnuson, Carl W ; Venugopal, Archana ; An, Jinho ; Suk, Ji Won ; Han, Boyang ; Borysiak, Mark ; Cai, Weiwei ; Velamakanni, Aruna ; Zhu, Yanwu ; Fu, Lianfeng ; Vogel, Eric M ; Voelkl, Edgar ; Colombo, Luigi ; Ruoff, Rodney S</creatorcontrib><description>The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16 000 cm2 V−1 s−1 at room temperature.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl101629g</identifier><identifier>PMID: 20957985</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Crystallization - methods ; Electronics ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Gases - chemistry ; Graphite - chemistry ; Macromolecular Substances - chemistry ; Materials science ; Materials Testing ; Membranes, Artificial ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular Conformation ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Particle Size ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Surface Properties ; Transistors</subject><ispartof>Nano letters, 2010-11, Vol.10 (11), p.4328-4334</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-9008798adf4cb8702848fb754c2d626d045ebff60acc8229f8bca3762a21b4a93</citedby><cites>FETCH-LOGICAL-a344t-9008798adf4cb8702848fb754c2d626d045ebff60acc8229f8bca3762a21b4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl101629g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl101629g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23419987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20957985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xuesong</creatorcontrib><creatorcontrib>Magnuson, Carl W</creatorcontrib><creatorcontrib>Venugopal, Archana</creatorcontrib><creatorcontrib>An, Jinho</creatorcontrib><creatorcontrib>Suk, Ji Won</creatorcontrib><creatorcontrib>Han, Boyang</creatorcontrib><creatorcontrib>Borysiak, Mark</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Velamakanni, Aruna</creatorcontrib><creatorcontrib>Zhu, Yanwu</creatorcontrib><creatorcontrib>Fu, Lianfeng</creatorcontrib><creatorcontrib>Vogel, Eric M</creatorcontrib><creatorcontrib>Voelkl, Edgar</creatorcontrib><creatorcontrib>Colombo, Luigi</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><title>Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16 000 cm2 V−1 s−1 at room temperature.</description><subject>Applied sciences</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization - methods</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Gases - chemistry</subject><subject>Graphite - chemistry</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Membranes, Artificial</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular Conformation</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Surface Properties</subject><subject>Transistors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0EFLwzAUwPEgitPpwS8guYh4qCZp2iZH2dwUBgrbvJbXLN0y2qYmLWN-eiub28VT3uHHe-GP0A0lj5Qw-lQVlNCYyeUJuqBRSIJYSnZ6mAXvoUvv14QQGUbkHPUYkVEiRXSB5mMH9UpXGo9MUXq8Mc0KT8AtNR7aEkyFp-Zb42yLAc82Npg2usaDlS6NggJ_Qm0dHuraetMYW-EPZ5X2_gqd5VB4fb1_-2g-epkNXoPJ-_ht8DwJIOS8CSQhovsGLHKuMpEQJrjIsyTiii1iFi8Ij3SW5zEBpQRjMheZgjCJGTCacZBhH93v9tbOfrXaN2lpvNJFAZW2rU-TOOQJjSjt5MNOKme9dzpPa2dKcNuUkvQ3YnqI2Nnb_dY2K_XiIP-qdeBuD8B3GXIHlTL-6EJOpRTJ0YHy6dq2rupi_HPwB4R3hEI</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Li, Xuesong</creator><creator>Magnuson, Carl W</creator><creator>Venugopal, Archana</creator><creator>An, Jinho</creator><creator>Suk, Ji Won</creator><creator>Han, Boyang</creator><creator>Borysiak, Mark</creator><creator>Cai, Weiwei</creator><creator>Velamakanni, Aruna</creator><creator>Zhu, Yanwu</creator><creator>Fu, Lianfeng</creator><creator>Vogel, Eric M</creator><creator>Voelkl, Edgar</creator><creator>Colombo, Luigi</creator><creator>Ruoff, Rodney S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101110</creationdate><title>Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process</title><author>Li, Xuesong ; Magnuson, Carl W ; Venugopal, Archana ; An, Jinho ; Suk, Ji Won ; Han, Boyang ; Borysiak, Mark ; Cai, Weiwei ; Velamakanni, Aruna ; Zhu, Yanwu ; Fu, Lianfeng ; Vogel, Eric M ; Voelkl, Edgar ; Colombo, Luigi ; Ruoff, Rodney S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-9008798adf4cb8702848fb754c2d626d045ebff60acc8229f8bca3762a21b4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization - methods</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Gases - chemistry</topic><topic>Graphite - chemistry</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Membranes, Artificial</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular Conformation</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Surface Properties</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuesong</creatorcontrib><creatorcontrib>Magnuson, Carl W</creatorcontrib><creatorcontrib>Venugopal, Archana</creatorcontrib><creatorcontrib>An, Jinho</creatorcontrib><creatorcontrib>Suk, Ji Won</creatorcontrib><creatorcontrib>Han, Boyang</creatorcontrib><creatorcontrib>Borysiak, Mark</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Velamakanni, Aruna</creatorcontrib><creatorcontrib>Zhu, Yanwu</creatorcontrib><creatorcontrib>Fu, Lianfeng</creatorcontrib><creatorcontrib>Vogel, Eric M</creatorcontrib><creatorcontrib>Voelkl, Edgar</creatorcontrib><creatorcontrib>Colombo, Luigi</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuesong</au><au>Magnuson, Carl W</au><au>Venugopal, Archana</au><au>An, Jinho</au><au>Suk, Ji Won</au><au>Han, Boyang</au><au>Borysiak, Mark</au><au>Cai, Weiwei</au><au>Velamakanni, Aruna</au><au>Zhu, Yanwu</au><au>Fu, Lianfeng</au><au>Vogel, Eric M</au><au>Voelkl, Edgar</au><au>Colombo, Luigi</au><au>Ruoff, Rodney S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-11-10</date><risdate>2010</risdate><volume>10</volume><issue>11</issue><spage>4328</spage><epage>4334</epage><pages>4328-4334</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16 000 cm2 V−1 s−1 at room temperature.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20957985</pmid><doi>10.1021/nl101629g</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-11, Vol.10 (11), p.4328-4334 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_763471511 |
source | ACS Publications; MEDLINE |
subjects | Applied sciences Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology Crystallization - methods Electronics Exact sciences and technology Fullerenes and related materials diamonds, graphite Gases - chemistry Graphite - chemistry Macromolecular Substances - chemistry Materials science Materials Testing Membranes, Artificial Methods of deposition of films and coatings film growth and epitaxy Molecular Conformation Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - methods Particle Size Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Specific materials Surface Properties Transistors |
title | Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Films%20with%20Large%20Domain%20Size%20by%20a%20Two-Step%20Chemical%20Vapor%20Deposition%20Process&rft.jtitle=Nano%20letters&rft.au=Li,%20Xuesong&rft.date=2010-11-10&rft.volume=10&rft.issue=11&rft.spage=4328&rft.epage=4334&rft.pages=4328-4334&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl101629g&rft_dat=%3Cproquest_cross%3E763471511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763471511&rft_id=info:pmid/20957985&rfr_iscdi=true |