Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process

The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2010-11, Vol.10 (11), p.4328-4334
Hauptverfasser: Li, Xuesong, Magnuson, Carl W, Venugopal, Archana, An, Jinho, Suk, Ji Won, Han, Boyang, Borysiak, Mark, Cai, Weiwei, Velamakanni, Aruna, Zhu, Yanwu, Fu, Lianfeng, Vogel, Eric M, Voelkl, Edgar, Colombo, Luigi, Ruoff, Rodney S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4334
container_issue 11
container_start_page 4328
container_title Nano letters
container_volume 10
creator Li, Xuesong
Magnuson, Carl W
Venugopal, Archana
An, Jinho
Suk, Ji Won
Han, Boyang
Borysiak, Mark
Cai, Weiwei
Velamakanni, Aruna
Zhu, Yanwu
Fu, Lianfeng
Vogel, Eric M
Voelkl, Edgar
Colombo, Luigi
Ruoff, Rodney S
description The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16 000 cm2 V−1 s−1 at room temperature.
doi_str_mv 10.1021/nl101629g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_763471511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>763471511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-9008798adf4cb8702848fb754c2d626d045ebff60acc8229f8bca3762a21b4a93</originalsourceid><addsrcrecordid>eNpt0EFLwzAUwPEgitPpwS8guYh4qCZp2iZH2dwUBgrbvJbXLN0y2qYmLWN-eiub28VT3uHHe-GP0A0lj5Qw-lQVlNCYyeUJuqBRSIJYSnZ6mAXvoUvv14QQGUbkHPUYkVEiRXSB5mMH9UpXGo9MUXq8Mc0KT8AtNR7aEkyFp-Zb42yLAc82Npg2usaDlS6NggJ_Qm0dHuraetMYW-EPZ5X2_gqd5VB4fb1_-2g-epkNXoPJ-_ht8DwJIOS8CSQhovsGLHKuMpEQJrjIsyTiii1iFi8Ij3SW5zEBpQRjMheZgjCJGTCacZBhH93v9tbOfrXaN2lpvNJFAZW2rU-TOOQJjSjt5MNOKme9dzpPa2dKcNuUkvQ3YnqI2Nnb_dY2K_XiIP-qdeBuD8B3GXIHlTL-6EJOpRTJ0YHy6dq2rupi_HPwB4R3hEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763471511</pqid></control><display><type>article</type><title>Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process</title><source>ACS Publications</source><source>MEDLINE</source><creator>Li, Xuesong ; Magnuson, Carl W ; Venugopal, Archana ; An, Jinho ; Suk, Ji Won ; Han, Boyang ; Borysiak, Mark ; Cai, Weiwei ; Velamakanni, Aruna ; Zhu, Yanwu ; Fu, Lianfeng ; Vogel, Eric M ; Voelkl, Edgar ; Colombo, Luigi ; Ruoff, Rodney S</creator><creatorcontrib>Li, Xuesong ; Magnuson, Carl W ; Venugopal, Archana ; An, Jinho ; Suk, Ji Won ; Han, Boyang ; Borysiak, Mark ; Cai, Weiwei ; Velamakanni, Aruna ; Zhu, Yanwu ; Fu, Lianfeng ; Vogel, Eric M ; Voelkl, Edgar ; Colombo, Luigi ; Ruoff, Rodney S</creatorcontrib><description>The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16 000 cm2 V−1 s−1 at room temperature.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl101629g</identifier><identifier>PMID: 20957985</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Crystallization - methods ; Electronics ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Gases - chemistry ; Graphite - chemistry ; Macromolecular Substances - chemistry ; Materials science ; Materials Testing ; Membranes, Artificial ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular Conformation ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Particle Size ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Surface Properties ; Transistors</subject><ispartof>Nano letters, 2010-11, Vol.10 (11), p.4328-4334</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-9008798adf4cb8702848fb754c2d626d045ebff60acc8229f8bca3762a21b4a93</citedby><cites>FETCH-LOGICAL-a344t-9008798adf4cb8702848fb754c2d626d045ebff60acc8229f8bca3762a21b4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl101629g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl101629g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23419987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20957985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xuesong</creatorcontrib><creatorcontrib>Magnuson, Carl W</creatorcontrib><creatorcontrib>Venugopal, Archana</creatorcontrib><creatorcontrib>An, Jinho</creatorcontrib><creatorcontrib>Suk, Ji Won</creatorcontrib><creatorcontrib>Han, Boyang</creatorcontrib><creatorcontrib>Borysiak, Mark</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Velamakanni, Aruna</creatorcontrib><creatorcontrib>Zhu, Yanwu</creatorcontrib><creatorcontrib>Fu, Lianfeng</creatorcontrib><creatorcontrib>Vogel, Eric M</creatorcontrib><creatorcontrib>Voelkl, Edgar</creatorcontrib><creatorcontrib>Colombo, Luigi</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><title>Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16 000 cm2 V−1 s−1 at room temperature.</description><subject>Applied sciences</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization - methods</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Gases - chemistry</subject><subject>Graphite - chemistry</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Membranes, Artificial</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular Conformation</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Surface Properties</subject><subject>Transistors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0EFLwzAUwPEgitPpwS8guYh4qCZp2iZH2dwUBgrbvJbXLN0y2qYmLWN-eiub28VT3uHHe-GP0A0lj5Qw-lQVlNCYyeUJuqBRSIJYSnZ6mAXvoUvv14QQGUbkHPUYkVEiRXSB5mMH9UpXGo9MUXq8Mc0KT8AtNR7aEkyFp-Zb42yLAc82Npg2usaDlS6NggJ_Qm0dHuraetMYW-EPZ5X2_gqd5VB4fb1_-2g-epkNXoPJ-_ht8DwJIOS8CSQhovsGLHKuMpEQJrjIsyTiii1iFi8Ij3SW5zEBpQRjMheZgjCJGTCacZBhH93v9tbOfrXaN2lpvNJFAZW2rU-TOOQJjSjt5MNOKme9dzpPa2dKcNuUkvQ3YnqI2Nnb_dY2K_XiIP-qdeBuD8B3GXIHlTL-6EJOpRTJ0YHy6dq2rupi_HPwB4R3hEI</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Li, Xuesong</creator><creator>Magnuson, Carl W</creator><creator>Venugopal, Archana</creator><creator>An, Jinho</creator><creator>Suk, Ji Won</creator><creator>Han, Boyang</creator><creator>Borysiak, Mark</creator><creator>Cai, Weiwei</creator><creator>Velamakanni, Aruna</creator><creator>Zhu, Yanwu</creator><creator>Fu, Lianfeng</creator><creator>Vogel, Eric M</creator><creator>Voelkl, Edgar</creator><creator>Colombo, Luigi</creator><creator>Ruoff, Rodney S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101110</creationdate><title>Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process</title><author>Li, Xuesong ; Magnuson, Carl W ; Venugopal, Archana ; An, Jinho ; Suk, Ji Won ; Han, Boyang ; Borysiak, Mark ; Cai, Weiwei ; Velamakanni, Aruna ; Zhu, Yanwu ; Fu, Lianfeng ; Vogel, Eric M ; Voelkl, Edgar ; Colombo, Luigi ; Ruoff, Rodney S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-9008798adf4cb8702848fb754c2d626d045ebff60acc8229f8bca3762a21b4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization - methods</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Gases - chemistry</topic><topic>Graphite - chemistry</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Membranes, Artificial</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular Conformation</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Surface Properties</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuesong</creatorcontrib><creatorcontrib>Magnuson, Carl W</creatorcontrib><creatorcontrib>Venugopal, Archana</creatorcontrib><creatorcontrib>An, Jinho</creatorcontrib><creatorcontrib>Suk, Ji Won</creatorcontrib><creatorcontrib>Han, Boyang</creatorcontrib><creatorcontrib>Borysiak, Mark</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Velamakanni, Aruna</creatorcontrib><creatorcontrib>Zhu, Yanwu</creatorcontrib><creatorcontrib>Fu, Lianfeng</creatorcontrib><creatorcontrib>Vogel, Eric M</creatorcontrib><creatorcontrib>Voelkl, Edgar</creatorcontrib><creatorcontrib>Colombo, Luigi</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuesong</au><au>Magnuson, Carl W</au><au>Venugopal, Archana</au><au>An, Jinho</au><au>Suk, Ji Won</au><au>Han, Boyang</au><au>Borysiak, Mark</au><au>Cai, Weiwei</au><au>Velamakanni, Aruna</au><au>Zhu, Yanwu</au><au>Fu, Lianfeng</au><au>Vogel, Eric M</au><au>Voelkl, Edgar</au><au>Colombo, Luigi</au><au>Ruoff, Rodney S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-11-10</date><risdate>2010</risdate><volume>10</volume><issue>11</issue><spage>4328</spage><epage>4334</epage><pages>4328-4334</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16 000 cm2 V−1 s−1 at room temperature.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20957985</pmid><doi>10.1021/nl101629g</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2010-11, Vol.10 (11), p.4328-4334
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_763471511
source ACS Publications; MEDLINE
subjects Applied sciences
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science
rheology
Crystallization - methods
Electronics
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Gases - chemistry
Graphite - chemistry
Macromolecular Substances - chemistry
Materials science
Materials Testing
Membranes, Artificial
Methods of deposition of films and coatings
film growth and epitaxy
Molecular Conformation
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - methods
Particle Size
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Specific materials
Surface Properties
Transistors
title Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Films%20with%20Large%20Domain%20Size%20by%20a%20Two-Step%20Chemical%20Vapor%20Deposition%20Process&rft.jtitle=Nano%20letters&rft.au=Li,%20Xuesong&rft.date=2010-11-10&rft.volume=10&rft.issue=11&rft.spage=4328&rft.epage=4334&rft.pages=4328-4334&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl101629g&rft_dat=%3Cproquest_cross%3E763471511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763471511&rft_id=info:pmid/20957985&rfr_iscdi=true