Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes
We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the ave...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-11, Vol.10 (11), p.4538-4543 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4543 |
---|---|
container_issue | 11 |
container_start_page | 4538 |
container_title | Nano letters |
container_volume | 10 |
creator | Santavicca, Daniel F Chudow, Joel D Prober, Daniel E Purewal, Meninder S Kim, Philip |
description | We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion. |
doi_str_mv | 10.1021/nl1025002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_763470901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>763470901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-aae2b796a18667b0bbfdd0ee3880a9e13dd45d3179ff50ece83e60a5b206031b3</originalsourceid><addsrcrecordid>eNpt0E1LxDAQBuAgit8H_4DkIuKhOmn6laMs6wcs7mEVj2XSTLWSTTVphf33RlzXi6eZw8M7zMvYiYBLAam4cjaOHCDdYvsil5AUSqXbm73K9thBCG8AoGQOu2wvjYtQKttn86kj_7Lisz4E3rd8eCU-tdQMvnd8sQoDLXnn-L0z3WdnRrR80bkXS8kzWkuGT9DrKB_Q9cOoKRyxnRZtoOP1PGRPN9PHyV0ym9_eT65nCWZZPiSIlOpSFSiqoig1aN0aA0SyqgAVCWlMlhspStW2OVBDlaQCMNcpFCCFlofs_Cf33fcfI4WhXnahIWvRUT-GuixkVoICEeXFj2x8_NFTW7_7bol-VQuov-urN_VFe7pOHfWSzEb-9hXB2RpgaNC2Hl3ThT8nszTmiD-HTajf-tG7WMY_B78AicWCIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763470901</pqid></control><display><type>article</type><title>Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes</title><source>ACS Publications</source><source>MEDLINE</source><creator>Santavicca, Daniel F ; Chudow, Joel D ; Prober, Daniel E ; Purewal, Meninder S ; Kim, Philip</creator><creatorcontrib>Santavicca, Daniel F ; Chudow, Joel D ; Prober, Daniel E ; Purewal, Meninder S ; Kim, Philip</creatorcontrib><description>We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl1025002</identifier><identifier>PMID: 20931994</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Computer Simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electron Transport ; Energy Transfer ; Exact sciences and technology ; Materials science ; Materials Testing ; Models, Chemical ; Nanoscale materials and structures: fabrication and characterization ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotubes ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Particle Size ; Physics ; Thermal Conductivity ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>Nano letters, 2010-11, Vol.10 (11), p.4538-4543</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-aae2b796a18667b0bbfdd0ee3880a9e13dd45d3179ff50ece83e60a5b206031b3</citedby><cites>FETCH-LOGICAL-a445t-aae2b796a18667b0bbfdd0ee3880a9e13dd45d3179ff50ece83e60a5b206031b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl1025002$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl1025002$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23420021$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20931994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santavicca, Daniel F</creatorcontrib><creatorcontrib>Chudow, Joel D</creatorcontrib><creatorcontrib>Prober, Daniel E</creatorcontrib><creatorcontrib>Purewal, Meninder S</creatorcontrib><creatorcontrib>Kim, Philip</creatorcontrib><title>Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.</description><subject>Computer Simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron Transport</subject><subject>Energy Transfer</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Models, Chemical</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotubes</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Thermal Conductivity</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1LxDAQBuAgit8H_4DkIuKhOmn6laMs6wcs7mEVj2XSTLWSTTVphf33RlzXi6eZw8M7zMvYiYBLAam4cjaOHCDdYvsil5AUSqXbm73K9thBCG8AoGQOu2wvjYtQKttn86kj_7Lisz4E3rd8eCU-tdQMvnd8sQoDLXnn-L0z3WdnRrR80bkXS8kzWkuGT9DrKB_Q9cOoKRyxnRZtoOP1PGRPN9PHyV0ym9_eT65nCWZZPiSIlOpSFSiqoig1aN0aA0SyqgAVCWlMlhspStW2OVBDlaQCMNcpFCCFlofs_Cf33fcfI4WhXnahIWvRUT-GuixkVoICEeXFj2x8_NFTW7_7bol-VQuov-urN_VFe7pOHfWSzEb-9hXB2RpgaNC2Hl3ThT8nszTmiD-HTajf-tG7WMY_B78AicWCIA</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Santavicca, Daniel F</creator><creator>Chudow, Joel D</creator><creator>Prober, Daniel E</creator><creator>Purewal, Meninder S</creator><creator>Kim, Philip</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101110</creationdate><title>Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes</title><author>Santavicca, Daniel F ; Chudow, Joel D ; Prober, Daniel E ; Purewal, Meninder S ; Kim, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-aae2b796a18667b0bbfdd0ee3880a9e13dd45d3179ff50ece83e60a5b206031b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron Transport</topic><topic>Energy Transfer</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Models, Chemical</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotubes</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Thermal Conductivity</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santavicca, Daniel F</creatorcontrib><creatorcontrib>Chudow, Joel D</creatorcontrib><creatorcontrib>Prober, Daniel E</creatorcontrib><creatorcontrib>Purewal, Meninder S</creatorcontrib><creatorcontrib>Kim, Philip</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santavicca, Daniel F</au><au>Chudow, Joel D</au><au>Prober, Daniel E</au><au>Purewal, Meninder S</au><au>Kim, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-11-10</date><risdate>2010</risdate><volume>10</volume><issue>11</issue><spage>4538</spage><epage>4543</epage><pages>4538-4543</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20931994</pmid><doi>10.1021/nl1025002</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-11, Vol.10 (11), p.4538-4543 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_763470901 |
source | ACS Publications; MEDLINE |
subjects | Computer Simulation Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Electron Transport Energy Transfer Exact sciences and technology Materials science Materials Testing Models, Chemical Nanoscale materials and structures: fabrication and characterization Nanostructures - chemistry Nanostructures - ultrastructure Nanotubes Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Particle Size Physics Thermal Conductivity Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes |
title | Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Loss%20of%20the%20Electron%20System%20in%20Individual%20Single-Walled%20Carbon%20Nanotubes&rft.jtitle=Nano%20letters&rft.au=Santavicca,%20Daniel%20F&rft.date=2010-11-10&rft.volume=10&rft.issue=11&rft.spage=4538&rft.epage=4543&rft.pages=4538-4543&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl1025002&rft_dat=%3Cproquest_cross%3E763470901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763470901&rft_id=info:pmid/20931994&rfr_iscdi=true |