Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes

We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the ave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2010-11, Vol.10 (11), p.4538-4543
Hauptverfasser: Santavicca, Daniel F, Chudow, Joel D, Prober, Daniel E, Purewal, Meninder S, Kim, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4543
container_issue 11
container_start_page 4538
container_title Nano letters
container_volume 10
creator Santavicca, Daniel F
Chudow, Joel D
Prober, Daniel E
Purewal, Meninder S
Kim, Philip
description We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.
doi_str_mv 10.1021/nl1025002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_763470901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>763470901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-aae2b796a18667b0bbfdd0ee3880a9e13dd45d3179ff50ece83e60a5b206031b3</originalsourceid><addsrcrecordid>eNpt0E1LxDAQBuAgit8H_4DkIuKhOmn6laMs6wcs7mEVj2XSTLWSTTVphf33RlzXi6eZw8M7zMvYiYBLAam4cjaOHCDdYvsil5AUSqXbm73K9thBCG8AoGQOu2wvjYtQKttn86kj_7Lisz4E3rd8eCU-tdQMvnd8sQoDLXnn-L0z3WdnRrR80bkXS8kzWkuGT9DrKB_Q9cOoKRyxnRZtoOP1PGRPN9PHyV0ym9_eT65nCWZZPiSIlOpSFSiqoig1aN0aA0SyqgAVCWlMlhspStW2OVBDlaQCMNcpFCCFlofs_Cf33fcfI4WhXnahIWvRUT-GuixkVoICEeXFj2x8_NFTW7_7bol-VQuov-urN_VFe7pOHfWSzEb-9hXB2RpgaNC2Hl3ThT8nszTmiD-HTajf-tG7WMY_B78AicWCIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763470901</pqid></control><display><type>article</type><title>Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes</title><source>ACS Publications</source><source>MEDLINE</source><creator>Santavicca, Daniel F ; Chudow, Joel D ; Prober, Daniel E ; Purewal, Meninder S ; Kim, Philip</creator><creatorcontrib>Santavicca, Daniel F ; Chudow, Joel D ; Prober, Daniel E ; Purewal, Meninder S ; Kim, Philip</creatorcontrib><description>We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl1025002</identifier><identifier>PMID: 20931994</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Computer Simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electron Transport ; Energy Transfer ; Exact sciences and technology ; Materials science ; Materials Testing ; Models, Chemical ; Nanoscale materials and structures: fabrication and characterization ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotubes ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Particle Size ; Physics ; Thermal Conductivity ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>Nano letters, 2010-11, Vol.10 (11), p.4538-4543</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-aae2b796a18667b0bbfdd0ee3880a9e13dd45d3179ff50ece83e60a5b206031b3</citedby><cites>FETCH-LOGICAL-a445t-aae2b796a18667b0bbfdd0ee3880a9e13dd45d3179ff50ece83e60a5b206031b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl1025002$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl1025002$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23420021$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20931994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santavicca, Daniel F</creatorcontrib><creatorcontrib>Chudow, Joel D</creatorcontrib><creatorcontrib>Prober, Daniel E</creatorcontrib><creatorcontrib>Purewal, Meninder S</creatorcontrib><creatorcontrib>Kim, Philip</creatorcontrib><title>Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.</description><subject>Computer Simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron Transport</subject><subject>Energy Transfer</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Models, Chemical</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotubes</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Thermal Conductivity</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1LxDAQBuAgit8H_4DkIuKhOmn6laMs6wcs7mEVj2XSTLWSTTVphf33RlzXi6eZw8M7zMvYiYBLAam4cjaOHCDdYvsil5AUSqXbm73K9thBCG8AoGQOu2wvjYtQKttn86kj_7Lisz4E3rd8eCU-tdQMvnd8sQoDLXnn-L0z3WdnRrR80bkXS8kzWkuGT9DrKB_Q9cOoKRyxnRZtoOP1PGRPN9PHyV0ym9_eT65nCWZZPiSIlOpSFSiqoig1aN0aA0SyqgAVCWlMlhspStW2OVBDlaQCMNcpFCCFlofs_Cf33fcfI4WhXnahIWvRUT-GuixkVoICEeXFj2x8_NFTW7_7bol-VQuov-urN_VFe7pOHfWSzEb-9hXB2RpgaNC2Hl3ThT8nszTmiD-HTajf-tG7WMY_B78AicWCIA</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Santavicca, Daniel F</creator><creator>Chudow, Joel D</creator><creator>Prober, Daniel E</creator><creator>Purewal, Meninder S</creator><creator>Kim, Philip</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101110</creationdate><title>Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes</title><author>Santavicca, Daniel F ; Chudow, Joel D ; Prober, Daniel E ; Purewal, Meninder S ; Kim, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-aae2b796a18667b0bbfdd0ee3880a9e13dd45d3179ff50ece83e60a5b206031b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron Transport</topic><topic>Energy Transfer</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Models, Chemical</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotubes</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Thermal Conductivity</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santavicca, Daniel F</creatorcontrib><creatorcontrib>Chudow, Joel D</creatorcontrib><creatorcontrib>Prober, Daniel E</creatorcontrib><creatorcontrib>Purewal, Meninder S</creatorcontrib><creatorcontrib>Kim, Philip</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santavicca, Daniel F</au><au>Chudow, Joel D</au><au>Prober, Daniel E</au><au>Purewal, Meninder S</au><au>Kim, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-11-10</date><risdate>2010</risdate><volume>10</volume><issue>11</issue><spage>4538</spage><epage>4543</epage><pages>4538-4543</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20931994</pmid><doi>10.1021/nl1025002</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2010-11, Vol.10 (11), p.4538-4543
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_763470901
source ACS Publications; MEDLINE
subjects Computer Simulation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electron Transport
Energy Transfer
Exact sciences and technology
Materials science
Materials Testing
Models, Chemical
Nanoscale materials and structures: fabrication and characterization
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotubes
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Particle Size
Physics
Thermal Conductivity
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
title Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Loss%20of%20the%20Electron%20System%20in%20Individual%20Single-Walled%20Carbon%20Nanotubes&rft.jtitle=Nano%20letters&rft.au=Santavicca,%20Daniel%20F&rft.date=2010-11-10&rft.volume=10&rft.issue=11&rft.spage=4538&rft.epage=4543&rft.pages=4538-4543&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl1025002&rft_dat=%3Cproquest_cross%3E763470901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763470901&rft_id=info:pmid/20931994&rfr_iscdi=true