Characterization of DAF-2, a high molecular weight form of decay- accelerating factor (DAF; CD55), as a covalently cross-linked dimer of DAF-1

Human E express two surface forms of decay-accelerating factor (DAF; CD55). On SDS-PAGE under reducing conditions the major form, DAF-1, migrates as a 70-kDa protein and the minor form, DAF-2, present at < 10% the amount of DAF-1, migrates as a 140-kDa protein (Kinoshita, T., S. I. Rosenfeld, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1994-01, Vol.152 (2), p.676-685
Hauptverfasser: Nickells, MW, Alvarez, JI, Lublin, DM, Atkinson, JP
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 685
container_issue 2
container_start_page 676
container_title The Journal of immunology (1950)
container_volume 152
creator Nickells, MW
Alvarez, JI
Lublin, DM
Atkinson, JP
description Human E express two surface forms of decay-accelerating factor (DAF; CD55). On SDS-PAGE under reducing conditions the major form, DAF-1, migrates as a 70-kDa protein and the minor form, DAF-2, present at < 10% the amount of DAF-1, migrates as a 140-kDa protein (Kinoshita, T., S. I. Rosenfeld, and V. Nussenzweig. 1987. J. Immunol. 138:2994). Both forms possess decay-accelerating activity and, after purification from solubilized E, reinsert into sheep E, indicating a glycosylphosphatidylinositol anchor. In contrast to human cells, these two forms of DAF from orangutan E are expressed in approximately equal amounts (Nickells, M. W., and J. P. Atkinson. 1990. J. Immunol. 144:4262). An orangutan B lymphocyte cell line, CP81, also expresses similar quantities of both forms. These sources of orangutan DAF were utilized for further characterization of DAF-2. Orangutan and human DAF-1 were 98% and 95% homologous at the nucleotide and amino acid levels, respectively. Northern and Southern analyses of orangutan DAF were also similar to those for human DAF. Tryptic peptide maps of DAF-1 and DAF-2 were identical. After treatment with phosphatidylinositol-specific phospholipase C and glycosidases, the change in M(r) of DAF-2 was consistent with it possessing two glycosylphosphatidylinositol anchors and twice as much oligosaccharide as DAF-1. Biosynthetic analysis demonstrated a single 46-kDa precursor for both forms. Taken together, these data indicate that DAF-2 is a covalently cross-linked dimer of DAF-1. Analysis of a series of human DAF deletion mutants localized the cross-link(s) within the short consensus repeat domains.
doi_str_mv 10.4049/jimmunol.152.2.676
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76337071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16771216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-520e5bf4641c76b3bd76d9fdd9489bb170d6fbb6333b8c0a0cd5593ecc68c51c3</originalsourceid><addsrcrecordid>eNqFkd1qFDEYhoNY6rZ6A4KQA5EKnTU_k2QHj8rWVqHgiR6H_HZTM5OazDisF-E1m22366FHIeR5ny8fLwCvMVq2qO0-3IW-n4YUl5iRJVlywZ-BBWYMNZwj_hwsECKkwYKLF-CklDuEEEekPQbHgiEuKF6AP-uNysqMLoffagxpgMnDy4urhpxDBTfhdgP7FJ2ZospwdvU-Qp9yv8OsM2rbQGWMiy7X9HALfXWlDM-q4iNcXzL2vnpKVZn0S0U3jHELTU6lNDEMP5yFNvQuPw3FL8GRV7G4V_vzFHy_-vRt_bm5-Xr9ZX1x05iW0rFhBDmmfctbbATXVFvBbeet7dpVpzUWyHKvNaeU6pVBChnLWEedMXxlGDb0FLx79N7n9HNyZZR9KHWNqAaXpiJFjQok8H9BzIXABPMKkkfwYbvsvLzPoVd5KzGSu7bkU1uytiWJrG3V0Ju9fdK9s4fIvp76_nb_ropR0Wc1mFAOGO0o5xU8fHLX1xyyk6VXMVYplvM8_5v3F9urqz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16771216</pqid></control><display><type>article</type><title>Characterization of DAF-2, a high molecular weight form of decay- accelerating factor (DAF; CD55), as a covalently cross-linked dimer of DAF-1</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Nickells, MW ; Alvarez, JI ; Lublin, DM ; Atkinson, JP</creator><creatorcontrib>Nickells, MW ; Alvarez, JI ; Lublin, DM ; Atkinson, JP</creatorcontrib><description>Human E express two surface forms of decay-accelerating factor (DAF; CD55). On SDS-PAGE under reducing conditions the major form, DAF-1, migrates as a 70-kDa protein and the minor form, DAF-2, present at &lt; 10% the amount of DAF-1, migrates as a 140-kDa protein (Kinoshita, T., S. I. Rosenfeld, and V. Nussenzweig. 1987. J. Immunol. 138:2994). Both forms possess decay-accelerating activity and, after purification from solubilized E, reinsert into sheep E, indicating a glycosylphosphatidylinositol anchor. In contrast to human cells, these two forms of DAF from orangutan E are expressed in approximately equal amounts (Nickells, M. W., and J. P. Atkinson. 1990. J. Immunol. 144:4262). An orangutan B lymphocyte cell line, CP81, also expresses similar quantities of both forms. These sources of orangutan DAF were utilized for further characterization of DAF-2. Orangutan and human DAF-1 were 98% and 95% homologous at the nucleotide and amino acid levels, respectively. Northern and Southern analyses of orangutan DAF were also similar to those for human DAF. Tryptic peptide maps of DAF-1 and DAF-2 were identical. After treatment with phosphatidylinositol-specific phospholipase C and glycosidases, the change in M(r) of DAF-2 was consistent with it possessing two glycosylphosphatidylinositol anchors and twice as much oligosaccharide as DAF-1. Biosynthetic analysis demonstrated a single 46-kDa precursor for both forms. Taken together, these data indicate that DAF-2 is a covalently cross-linked dimer of DAF-1. Analysis of a series of human DAF deletion mutants localized the cross-link(s) within the short consensus repeat domains.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.152.2.676</identifier><identifier>PMID: 7506731</identifier><identifier>CODEN: JOIMA3</identifier><language>eng</language><publisher>Bethesda, MD: Am Assoc Immnol</publisher><subject>Amino Acid Sequence ; Animals ; Antigens, CD - chemistry ; Base Sequence ; Biological and medical sciences ; CD55 Antigens ; Complement ; DNA Primers - chemistry ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Gene Expression ; Genes ; Glycosylphosphatidylinositols ; Humans ; Macromolecular Substances ; Membrane Glycoproteins - chemistry ; Molecular immunology ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Peptide Mapping ; Pongo pygmaeus ; RNA, Messenger - genetics ; Sequence Alignment ; Sequence Deletion ; Sequence Homology, Amino Acid</subject><ispartof>The Journal of immunology (1950), 1994-01, Vol.152 (2), p.676-685</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-520e5bf4641c76b3bd76d9fdd9489bb170d6fbb6333b8c0a0cd5593ecc68c51c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3936667$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7506731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nickells, MW</creatorcontrib><creatorcontrib>Alvarez, JI</creatorcontrib><creatorcontrib>Lublin, DM</creatorcontrib><creatorcontrib>Atkinson, JP</creatorcontrib><title>Characterization of DAF-2, a high molecular weight form of decay- accelerating factor (DAF; CD55), as a covalently cross-linked dimer of DAF-1</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>Human E express two surface forms of decay-accelerating factor (DAF; CD55). On SDS-PAGE under reducing conditions the major form, DAF-1, migrates as a 70-kDa protein and the minor form, DAF-2, present at &lt; 10% the amount of DAF-1, migrates as a 140-kDa protein (Kinoshita, T., S. I. Rosenfeld, and V. Nussenzweig. 1987. J. Immunol. 138:2994). Both forms possess decay-accelerating activity and, after purification from solubilized E, reinsert into sheep E, indicating a glycosylphosphatidylinositol anchor. In contrast to human cells, these two forms of DAF from orangutan E are expressed in approximately equal amounts (Nickells, M. W., and J. P. Atkinson. 1990. J. Immunol. 144:4262). An orangutan B lymphocyte cell line, CP81, also expresses similar quantities of both forms. These sources of orangutan DAF were utilized for further characterization of DAF-2. Orangutan and human DAF-1 were 98% and 95% homologous at the nucleotide and amino acid levels, respectively. Northern and Southern analyses of orangutan DAF were also similar to those for human DAF. Tryptic peptide maps of DAF-1 and DAF-2 were identical. After treatment with phosphatidylinositol-specific phospholipase C and glycosidases, the change in M(r) of DAF-2 was consistent with it possessing two glycosylphosphatidylinositol anchors and twice as much oligosaccharide as DAF-1. Biosynthetic analysis demonstrated a single 46-kDa precursor for both forms. Taken together, these data indicate that DAF-2 is a covalently cross-linked dimer of DAF-1. Analysis of a series of human DAF deletion mutants localized the cross-link(s) within the short consensus repeat domains.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antigens, CD - chemistry</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>CD55 Antigens</subject><subject>Complement</subject><subject>DNA Primers - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Glycosylphosphatidylinositols</subject><subject>Humans</subject><subject>Macromolecular Substances</subject><subject>Membrane Glycoproteins - chemistry</subject><subject>Molecular immunology</subject><subject>Molecular Sequence Data</subject><subject>Molecular Weight</subject><subject>Mutation</subject><subject>Peptide Mapping</subject><subject>Pongo pygmaeus</subject><subject>RNA, Messenger - genetics</subject><subject>Sequence Alignment</subject><subject>Sequence Deletion</subject><subject>Sequence Homology, Amino Acid</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1qFDEYhoNY6rZ6A4KQA5EKnTU_k2QHj8rWVqHgiR6H_HZTM5OazDisF-E1m22366FHIeR5ny8fLwCvMVq2qO0-3IW-n4YUl5iRJVlywZ-BBWYMNZwj_hwsECKkwYKLF-CklDuEEEekPQbHgiEuKF6AP-uNysqMLoffagxpgMnDy4urhpxDBTfhdgP7FJ2ZospwdvU-Qp9yv8OsM2rbQGWMiy7X9HALfXWlDM-q4iNcXzL2vnpKVZn0S0U3jHELTU6lNDEMP5yFNvQuPw3FL8GRV7G4V_vzFHy_-vRt_bm5-Xr9ZX1x05iW0rFhBDmmfctbbATXVFvBbeet7dpVpzUWyHKvNaeU6pVBChnLWEedMXxlGDb0FLx79N7n9HNyZZR9KHWNqAaXpiJFjQok8H9BzIXABPMKkkfwYbvsvLzPoVd5KzGSu7bkU1uytiWJrG3V0Ju9fdK9s4fIvp76_nb_ropR0Wc1mFAOGO0o5xU8fHLX1xyyk6VXMVYplvM8_5v3F9urqz4</recordid><startdate>19940115</startdate><enddate>19940115</enddate><creator>Nickells, MW</creator><creator>Alvarez, JI</creator><creator>Lublin, DM</creator><creator>Atkinson, JP</creator><general>Am Assoc Immnol</general><general>American Association of Immunologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19940115</creationdate><title>Characterization of DAF-2, a high molecular weight form of decay- accelerating factor (DAF; CD55), as a covalently cross-linked dimer of DAF-1</title><author>Nickells, MW ; Alvarez, JI ; Lublin, DM ; Atkinson, JP</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-520e5bf4641c76b3bd76d9fdd9489bb170d6fbb6333b8c0a0cd5593ecc68c51c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antigens, CD - chemistry</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>CD55 Antigens</topic><topic>Complement</topic><topic>DNA Primers - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Glycosylphosphatidylinositols</topic><topic>Humans</topic><topic>Macromolecular Substances</topic><topic>Membrane Glycoproteins - chemistry</topic><topic>Molecular immunology</topic><topic>Molecular Sequence Data</topic><topic>Molecular Weight</topic><topic>Mutation</topic><topic>Peptide Mapping</topic><topic>Pongo pygmaeus</topic><topic>RNA, Messenger - genetics</topic><topic>Sequence Alignment</topic><topic>Sequence Deletion</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nickells, MW</creatorcontrib><creatorcontrib>Alvarez, JI</creatorcontrib><creatorcontrib>Lublin, DM</creatorcontrib><creatorcontrib>Atkinson, JP</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nickells, MW</au><au>Alvarez, JI</au><au>Lublin, DM</au><au>Atkinson, JP</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of DAF-2, a high molecular weight form of decay- accelerating factor (DAF; CD55), as a covalently cross-linked dimer of DAF-1</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>1994-01-15</date><risdate>1994</risdate><volume>152</volume><issue>2</issue><spage>676</spage><epage>685</epage><pages>676-685</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><coden>JOIMA3</coden><abstract>Human E express two surface forms of decay-accelerating factor (DAF; CD55). On SDS-PAGE under reducing conditions the major form, DAF-1, migrates as a 70-kDa protein and the minor form, DAF-2, present at &lt; 10% the amount of DAF-1, migrates as a 140-kDa protein (Kinoshita, T., S. I. Rosenfeld, and V. Nussenzweig. 1987. J. Immunol. 138:2994). Both forms possess decay-accelerating activity and, after purification from solubilized E, reinsert into sheep E, indicating a glycosylphosphatidylinositol anchor. In contrast to human cells, these two forms of DAF from orangutan E are expressed in approximately equal amounts (Nickells, M. W., and J. P. Atkinson. 1990. J. Immunol. 144:4262). An orangutan B lymphocyte cell line, CP81, also expresses similar quantities of both forms. These sources of orangutan DAF were utilized for further characterization of DAF-2. Orangutan and human DAF-1 were 98% and 95% homologous at the nucleotide and amino acid levels, respectively. Northern and Southern analyses of orangutan DAF were also similar to those for human DAF. Tryptic peptide maps of DAF-1 and DAF-2 were identical. After treatment with phosphatidylinositol-specific phospholipase C and glycosidases, the change in M(r) of DAF-2 was consistent with it possessing two glycosylphosphatidylinositol anchors and twice as much oligosaccharide as DAF-1. Biosynthetic analysis demonstrated a single 46-kDa precursor for both forms. Taken together, these data indicate that DAF-2 is a covalently cross-linked dimer of DAF-1. Analysis of a series of human DAF deletion mutants localized the cross-link(s) within the short consensus repeat domains.</abstract><cop>Bethesda, MD</cop><pub>Am Assoc Immnol</pub><pmid>7506731</pmid><doi>10.4049/jimmunol.152.2.676</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1767
ispartof The Journal of immunology (1950), 1994-01, Vol.152 (2), p.676-685
issn 0022-1767
1550-6606
language eng
recordid cdi_proquest_miscellaneous_76337071
source MEDLINE; Alma/SFX Local Collection
subjects Amino Acid Sequence
Animals
Antigens, CD - chemistry
Base Sequence
Biological and medical sciences
CD55 Antigens
Complement
DNA Primers - chemistry
Fundamental and applied biological sciences. Psychology
Fundamental immunology
Gene Expression
Genes
Glycosylphosphatidylinositols
Humans
Macromolecular Substances
Membrane Glycoproteins - chemistry
Molecular immunology
Molecular Sequence Data
Molecular Weight
Mutation
Peptide Mapping
Pongo pygmaeus
RNA, Messenger - genetics
Sequence Alignment
Sequence Deletion
Sequence Homology, Amino Acid
title Characterization of DAF-2, a high molecular weight form of decay- accelerating factor (DAF; CD55), as a covalently cross-linked dimer of DAF-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20DAF-2,%20a%20high%20molecular%20weight%20form%20of%20decay-%20accelerating%20factor%20(DAF;%20CD55),%20as%20a%20covalently%20cross-linked%20dimer%20of%20DAF-1&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Nickells,%20MW&rft.date=1994-01-15&rft.volume=152&rft.issue=2&rft.spage=676&rft.epage=685&rft.pages=676-685&rft.issn=0022-1767&rft.eissn=1550-6606&rft.coden=JOIMA3&rft_id=info:doi/10.4049/jimmunol.152.2.676&rft_dat=%3Cproquest_cross%3E16771216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16771216&rft_id=info:pmid/7506731&rfr_iscdi=true