Differential repair of excision gaps generated by transposable elements of the 'Ac family'
Studies on transposable elements of the Ac family have led to different models for excision gap repair in either plants or Drosophila. Excision products generated by the plant transposable elements Ac and Tam3 imply a more or less straightforward ligation of broken ends; excision products of the Dro...
Gespeichert in:
Veröffentlicht in: | BioEssays 1993-08, Vol.15 (8), p.507-512 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 512 |
---|---|
container_issue | 8 |
container_start_page | 507 |
container_title | BioEssays |
container_volume | 15 |
creator | Rommens, Caius M. T. Van Haaren, Mark J. J. Nijkamp, H. John J. Hille, Jacques |
description | Studies on transposable elements of the Ac family have led to different models for excision gap repair in either plants or Drosophila. Excision products generated by the plant transposable elements Ac and Tam3 imply a more or less straightforward ligation of broken ends; excision products of the Drosophila P element indicate the involvement of ‘double‐strand break’ (DSB) repair. Recent findings that excision products of Ac and Tam3 can also contain traces of the element ends indicate, however, that DSB repair might be an alternative repair mechanism in plants. A functional DSB repair mechanism in plants can also be deduced from the observed rapid increases of Ac copy number during plant development and from the involvement of Ac in the generation of internal Ac deletions. On the other hand, alternative repair mechanisms may also be functional in Drosophila, because some of the ‘footprints’ generated upon P excision can be explained by a mechanism that has been postulated for excision gap repair in plants. It is concluded that plants and Drosophila can use similar repair mechanisms, but that the predominance of a certain repair mechanism is determined by the host. |
doi_str_mv | 10.1002/bies.950150803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76248930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>5789097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4053-152654b53e2530e213336c655fef7809dad5d8b9b3c925cd00d651f57596570b3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EKkvhyg3J4kBPWcZ2xo6PpV9UVEXio0i9WE4yKS75ws6q3X9PVrtaIS6c5jDP82rmZey1gKUAkO_LQGlpEQRCAeoJWwiUIhOFKZ6yBUiNmZW5ec5epHQPAFbL_IAdFEKh0fmC3Z6GpqFI_RR8yyONPkQ-NJweq5DC0PM7PyZ-Rz1FP1HNyzWfou_TOCRftsSppW6W08aZfhI_Oq5447vQro9esmeNbxO92s1D9v387NvJx-zq88XlyfFVVuWAKpvv1ZiXqEiiApJCKaUrjdhQYwqwta-xLkpbqspKrGqAWqNo0KDVaKBUh-zdNneMw-8Vpcl1IVXUtr6nYZWcmV8urIIZfPsPeD-sYj_f5oRFKw3KfIaWW6iKQ0qRGjfG0Pm4dgLcpnG3adztG5-FN7vUVdlRvcd3Fc97u90_hJbW_0lzHy7Pvv6dnW3dkCZ63Ls-_nLaKIPux_WF-3J9o2-Lm0_uVP0B_Q6a6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195927524</pqid></control><display><type>article</type><title>Differential repair of excision gaps generated by transposable elements of the 'Ac family'</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Rommens, Caius M. T. ; Van Haaren, Mark J. J. ; Nijkamp, H. John J. ; Hille, Jacques</creator><creatorcontrib>Rommens, Caius M. T. ; Van Haaren, Mark J. J. ; Nijkamp, H. John J. ; Hille, Jacques</creatorcontrib><description>Studies on transposable elements of the Ac family have led to different models for excision gap repair in either plants or Drosophila. Excision products generated by the plant transposable elements Ac and Tam3 imply a more or less straightforward ligation of broken ends; excision products of the Drosophila P element indicate the involvement of ‘double‐strand break’ (DSB) repair. Recent findings that excision products of Ac and Tam3 can also contain traces of the element ends indicate, however, that DSB repair might be an alternative repair mechanism in plants. A functional DSB repair mechanism in plants can also be deduced from the observed rapid increases of Ac copy number during plant development and from the involvement of Ac in the generation of internal Ac deletions. On the other hand, alternative repair mechanisms may also be functional in Drosophila, because some of the ‘footprints’ generated upon P excision can be explained by a mechanism that has been postulated for excision gap repair in plants. It is concluded that plants and Drosophila can use similar repair mechanisms, but that the predominance of a certain repair mechanism is determined by the host.</description><identifier>ISSN: 0265-9247</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.950150803</identifier><identifier>PMID: 8135764</identifier><identifier>CODEN: BIOEEJ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Base Sequence ; Chemical elements ; DNA - genetics ; DNA Repair ; DNA Transposable Elements ; Drosophila melanogaster - genetics ; Flowers & plants ; Insects ; Models, Genetic ; Molecular Sequence Data ; Plants - genetics ; Sequence Deletion ; Zea mays - genetics</subject><ispartof>BioEssays, 1993-08, Vol.15 (8), p.507-512</ispartof><rights>Copyright © 1993 Cambridge University Press</rights><rights>Copyright Company of Biologists Limited, Department of Zoology Aug 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4053-152654b53e2530e213336c655fef7809dad5d8b9b3c925cd00d651f57596570b3</citedby><cites>FETCH-LOGICAL-c4053-152654b53e2530e213336c655fef7809dad5d8b9b3c925cd00d651f57596570b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.950150803$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.950150803$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8135764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rommens, Caius M. T.</creatorcontrib><creatorcontrib>Van Haaren, Mark J. J.</creatorcontrib><creatorcontrib>Nijkamp, H. John J.</creatorcontrib><creatorcontrib>Hille, Jacques</creatorcontrib><title>Differential repair of excision gaps generated by transposable elements of the 'Ac family'</title><title>BioEssays</title><addtitle>Bioessays</addtitle><description>Studies on transposable elements of the Ac family have led to different models for excision gap repair in either plants or Drosophila. Excision products generated by the plant transposable elements Ac and Tam3 imply a more or less straightforward ligation of broken ends; excision products of the Drosophila P element indicate the involvement of ‘double‐strand break’ (DSB) repair. Recent findings that excision products of Ac and Tam3 can also contain traces of the element ends indicate, however, that DSB repair might be an alternative repair mechanism in plants. A functional DSB repair mechanism in plants can also be deduced from the observed rapid increases of Ac copy number during plant development and from the involvement of Ac in the generation of internal Ac deletions. On the other hand, alternative repair mechanisms may also be functional in Drosophila, because some of the ‘footprints’ generated upon P excision can be explained by a mechanism that has been postulated for excision gap repair in plants. It is concluded that plants and Drosophila can use similar repair mechanisms, but that the predominance of a certain repair mechanism is determined by the host.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Chemical elements</subject><subject>DNA - genetics</subject><subject>DNA Repair</subject><subject>DNA Transposable Elements</subject><subject>Drosophila melanogaster - genetics</subject><subject>Flowers & plants</subject><subject>Insects</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Plants - genetics</subject><subject>Sequence Deletion</subject><subject>Zea mays - genetics</subject><issn>0265-9247</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi0EKkvhyg3J4kBPWcZ2xo6PpV9UVEXio0i9WE4yKS75ws6q3X9PVrtaIS6c5jDP82rmZey1gKUAkO_LQGlpEQRCAeoJWwiUIhOFKZ6yBUiNmZW5ec5epHQPAFbL_IAdFEKh0fmC3Z6GpqFI_RR8yyONPkQ-NJweq5DC0PM7PyZ-Rz1FP1HNyzWfou_TOCRftsSppW6W08aZfhI_Oq5447vQro9esmeNbxO92s1D9v387NvJx-zq88XlyfFVVuWAKpvv1ZiXqEiiApJCKaUrjdhQYwqwta-xLkpbqspKrGqAWqNo0KDVaKBUh-zdNneMw-8Vpcl1IVXUtr6nYZWcmV8urIIZfPsPeD-sYj_f5oRFKw3KfIaWW6iKQ0qRGjfG0Pm4dgLcpnG3adztG5-FN7vUVdlRvcd3Fc97u90_hJbW_0lzHy7Pvv6dnW3dkCZ63Ls-_nLaKIPux_WF-3J9o2-Lm0_uVP0B_Q6a6g</recordid><startdate>199308</startdate><enddate>199308</enddate><creator>Rommens, Caius M. T.</creator><creator>Van Haaren, Mark J. J.</creator><creator>Nijkamp, H. John J.</creator><creator>Hille, Jacques</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>199308</creationdate><title>Differential repair of excision gaps generated by transposable elements of the 'Ac family'</title><author>Rommens, Caius M. T. ; Van Haaren, Mark J. J. ; Nijkamp, H. John J. ; Hille, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4053-152654b53e2530e213336c655fef7809dad5d8b9b3c925cd00d651f57596570b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Chemical elements</topic><topic>DNA - genetics</topic><topic>DNA Repair</topic><topic>DNA Transposable Elements</topic><topic>Drosophila melanogaster - genetics</topic><topic>Flowers & plants</topic><topic>Insects</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Plants - genetics</topic><topic>Sequence Deletion</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rommens, Caius M. T.</creatorcontrib><creatorcontrib>Van Haaren, Mark J. J.</creatorcontrib><creatorcontrib>Nijkamp, H. John J.</creatorcontrib><creatorcontrib>Hille, Jacques</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rommens, Caius M. T.</au><au>Van Haaren, Mark J. J.</au><au>Nijkamp, H. John J.</au><au>Hille, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential repair of excision gaps generated by transposable elements of the 'Ac family'</atitle><jtitle>BioEssays</jtitle><addtitle>Bioessays</addtitle><date>1993-08</date><risdate>1993</risdate><volume>15</volume><issue>8</issue><spage>507</spage><epage>512</epage><pages>507-512</pages><issn>0265-9247</issn><eissn>1521-1878</eissn><coden>BIOEEJ</coden><abstract>Studies on transposable elements of the Ac family have led to different models for excision gap repair in either plants or Drosophila. Excision products generated by the plant transposable elements Ac and Tam3 imply a more or less straightforward ligation of broken ends; excision products of the Drosophila P element indicate the involvement of ‘double‐strand break’ (DSB) repair. Recent findings that excision products of Ac and Tam3 can also contain traces of the element ends indicate, however, that DSB repair might be an alternative repair mechanism in plants. A functional DSB repair mechanism in plants can also be deduced from the observed rapid increases of Ac copy number during plant development and from the involvement of Ac in the generation of internal Ac deletions. On the other hand, alternative repair mechanisms may also be functional in Drosophila, because some of the ‘footprints’ generated upon P excision can be explained by a mechanism that has been postulated for excision gap repair in plants. It is concluded that plants and Drosophila can use similar repair mechanisms, but that the predominance of a certain repair mechanism is determined by the host.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8135764</pmid><doi>10.1002/bies.950150803</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-9247 |
ispartof | BioEssays, 1993-08, Vol.15 (8), p.507-512 |
issn | 0265-9247 1521-1878 |
language | eng |
recordid | cdi_proquest_miscellaneous_76248930 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Base Sequence Chemical elements DNA - genetics DNA Repair DNA Transposable Elements Drosophila melanogaster - genetics Flowers & plants Insects Models, Genetic Molecular Sequence Data Plants - genetics Sequence Deletion Zea mays - genetics |
title | Differential repair of excision gaps generated by transposable elements of the 'Ac family' |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20repair%20of%20excision%20gaps%20generated%20by%20transposable%20elements%20of%20the%20'Ac%20family'&rft.jtitle=BioEssays&rft.au=Rommens,%20Caius%20M.%20T.&rft.date=1993-08&rft.volume=15&rft.issue=8&rft.spage=507&rft.epage=512&rft.pages=507-512&rft.issn=0265-9247&rft.eissn=1521-1878&rft.coden=BIOEEJ&rft_id=info:doi/10.1002/bies.950150803&rft_dat=%3Cproquest_cross%3E5789097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195927524&rft_id=info:pmid/8135764&rfr_iscdi=true |