Self-Organizing MultiLayer Perceptron

In this paper, we propose an extension of a self-organizing map called self-organizing multilayer perceptron (SOMLP) whose purpose is to achieve quantization of spaces of functions. Based on the use of multilayer perceptron networks, SOMLP comprises the unsupervised as well as supervised learning al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2010-11, Vol.21 (11), p.1766-1779
1. Verfasser: Gas, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1779
container_issue 11
container_start_page 1766
container_title IEEE transaction on neural networks and learning systems
container_volume 21
creator Gas, Bruno
description In this paper, we propose an extension of a self-organizing map called self-organizing multilayer perceptron (SOMLP) whose purpose is to achieve quantization of spaces of functions. Based on the use of multilayer perceptron networks, SOMLP comprises the unsupervised as well as supervised learning algorithms. We demonstrate that it is possible to use the commonly used vector quantization algorithms (LVQ algorithms) to build new algorithms called functional quantization algorithms (LFQ algorithms). The SOMLP can be used to model nonlinear and/or nonstationary complex dynamic processes, such as speech signals. While most of the functional data analysis (FDA) research is based on B-spline or similar univariate functions, the SOMLP algorithm allows quantization of function with high dimensional input space. As a consequence, classical FDA methods can be outperformed by increasing the dimensionality of the input space of the functions under analysis. Experiments on artificial and real world examples are presented which illustrate the potential of this approach.
doi_str_mv 10.1109/TNN.2010.2072790
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_762482613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5580080</ieee_id><sourcerecordid>849469398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-2c1746fb78566689a6301686d55649409da0d38abf8afb7f4cc1e56d8ad329173</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAgiq2XvSCIIEVcTD25TrIsRa1QW8G6DmkmU0emMzXpCPXpTWmt4MZVbl9OcvgROsPQxRjU7WQ06hKIKwIpSRXsoTZWDCcAiu7HOTCeKELSFjoK4R0AMw7iELUISC55qtqo8-LKPBn7mamKr6KaXT415bIYmpXzl8_OW7dY-ro6QQe5KYM73Y7H6PX-btIfJMPxw2O_N0wsY2SZEItTJvJpKrkQQiojKGAhRca5YIqBygxkVJppLk1UObMWOy4yaTJKFE7pMbrZ1H0zpV74Ym78Stem0IPeUK_3gDIcS8EnjvZ6Yxe-_mhcWOp5EawrS1O5uglaxheFokr-K1NBmCQC0yiv_sj3uvFVbFljiL0wyTiJCjbK-joE7_LdVzHodS465qLXuehtLvHKxbZwM527bHfhJ4gIOltggjVl7k1li_DrKKNEiHXX5xtXOOd2x5xLAAn0G_f8mXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030148452</pqid></control><display><type>article</type><title>Self-Organizing MultiLayer Perceptron</title><source>IEEE Electronic Library (IEL)</source><creator>Gas, Bruno</creator><creatorcontrib>Gas, Bruno</creatorcontrib><description>In this paper, we propose an extension of a self-organizing map called self-organizing multilayer perceptron (SOMLP) whose purpose is to achieve quantization of spaces of functions. Based on the use of multilayer perceptron networks, SOMLP comprises the unsupervised as well as supervised learning algorithms. We demonstrate that it is possible to use the commonly used vector quantization algorithms (LVQ algorithms) to build new algorithms called functional quantization algorithms (LFQ algorithms). The SOMLP can be used to model nonlinear and/or nonstationary complex dynamic processes, such as speech signals. While most of the functional data analysis (FDA) research is based on B-spline or similar univariate functions, the SOMLP algorithm allows quantization of function with high dimensional input space. As a consequence, classical FDA methods can be outperformed by increasing the dimensionality of the input space of the functions under analysis. Experiments on artificial and real world examples are presented which illustrate the potential of this approach.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2010.2072790</identifier><identifier>PMID: 20858579</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptation model ; Algorithm design and analysis ; Algorithms ; Applied sciences ; Approximation methods ; Artificial Intelligence ; Computer Science ; Computer science; control theory; systems ; Connectionism. Neural networks ; Construction ; Data processing ; Engineering Sciences ; Exact sciences and technology ; Functional data analysis ; Heuristic algorithms ; Machine Learning ; Mathematical Computing ; Mathematical models ; multilayer perceptron ; Multilayer perceptrons ; multivariate functions quantization ; Neural and Evolutionary Computing ; Neural networks ; Neural Networks (Computer) ; Neurons ; Nonlinear Dynamics ; Quantization ; Regression analysis ; Robotics ; self-organizing feature maps ; Signal and Image processing ; Signal Processing, Computer-Assisted ; Speech and sound recognition and synthesis. Linguistics ; speech processing ; Speech Recognition Software - standards ; Studies ; Vector quantization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2010-11, Vol.21 (11), p.1766-1779</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-2c1746fb78566689a6301686d55649409da0d38abf8afb7f4cc1e56d8ad329173</citedby><cites>FETCH-LOGICAL-c442t-2c1746fb78566689a6301686d55649409da0d38abf8afb7f4cc1e56d8ad329173</cites><orcidid>0009-0000-8938-5565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5580080$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5580080$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23432661$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20858579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03416490$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gas, Bruno</creatorcontrib><title>Self-Organizing MultiLayer Perceptron</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>In this paper, we propose an extension of a self-organizing map called self-organizing multilayer perceptron (SOMLP) whose purpose is to achieve quantization of spaces of functions. Based on the use of multilayer perceptron networks, SOMLP comprises the unsupervised as well as supervised learning algorithms. We demonstrate that it is possible to use the commonly used vector quantization algorithms (LVQ algorithms) to build new algorithms called functional quantization algorithms (LFQ algorithms). The SOMLP can be used to model nonlinear and/or nonstationary complex dynamic processes, such as speech signals. While most of the functional data analysis (FDA) research is based on B-spline or similar univariate functions, the SOMLP algorithm allows quantization of function with high dimensional input space. As a consequence, classical FDA methods can be outperformed by increasing the dimensionality of the input space of the functions under analysis. Experiments on artificial and real world examples are presented which illustrate the potential of this approach.</description><subject>Adaptation model</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Construction</subject><subject>Data processing</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Functional data analysis</subject><subject>Heuristic algorithms</subject><subject>Machine Learning</subject><subject>Mathematical Computing</subject><subject>Mathematical models</subject><subject>multilayer perceptron</subject><subject>Multilayer perceptrons</subject><subject>multivariate functions quantization</subject><subject>Neural and Evolutionary Computing</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Nonlinear Dynamics</subject><subject>Quantization</subject><subject>Regression analysis</subject><subject>Robotics</subject><subject>self-organizing feature maps</subject><subject>Signal and Image processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>speech processing</subject><subject>Speech Recognition Software - standards</subject><subject>Studies</subject><subject>Vector quantization</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0ctKAzEUBuAgiq2XvSCIIEVcTD25TrIsRa1QW8G6DmkmU0emMzXpCPXpTWmt4MZVbl9OcvgROsPQxRjU7WQ06hKIKwIpSRXsoTZWDCcAiu7HOTCeKELSFjoK4R0AMw7iELUISC55qtqo8-LKPBn7mamKr6KaXT415bIYmpXzl8_OW7dY-ro6QQe5KYM73Y7H6PX-btIfJMPxw2O_N0wsY2SZEItTJvJpKrkQQiojKGAhRca5YIqBygxkVJppLk1UObMWOy4yaTJKFE7pMbrZ1H0zpV74Ym78Stem0IPeUK_3gDIcS8EnjvZ6Yxe-_mhcWOp5EawrS1O5uglaxheFokr-K1NBmCQC0yiv_sj3uvFVbFljiL0wyTiJCjbK-joE7_LdVzHodS465qLXuehtLvHKxbZwM527bHfhJ4gIOltggjVl7k1li_DrKKNEiHXX5xtXOOd2x5xLAAn0G_f8mXo</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Gas, Bruno</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0000-8938-5565</orcidid></search><sort><creationdate>20101101</creationdate><title>Self-Organizing MultiLayer Perceptron</title><author>Gas, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-2c1746fb78566689a6301686d55649409da0d38abf8afb7f4cc1e56d8ad329173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Construction</topic><topic>Data processing</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Functional data analysis</topic><topic>Heuristic algorithms</topic><topic>Machine Learning</topic><topic>Mathematical Computing</topic><topic>Mathematical models</topic><topic>multilayer perceptron</topic><topic>Multilayer perceptrons</topic><topic>multivariate functions quantization</topic><topic>Neural and Evolutionary Computing</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Nonlinear Dynamics</topic><topic>Quantization</topic><topic>Regression analysis</topic><topic>Robotics</topic><topic>self-organizing feature maps</topic><topic>Signal and Image processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>speech processing</topic><topic>Speech Recognition Software - standards</topic><topic>Studies</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Gas, Bruno</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gas, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Organizing MultiLayer Perceptron</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>21</volume><issue>11</issue><spage>1766</spage><epage>1779</epage><pages>1766-1779</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>In this paper, we propose an extension of a self-organizing map called self-organizing multilayer perceptron (SOMLP) whose purpose is to achieve quantization of spaces of functions. Based on the use of multilayer perceptron networks, SOMLP comprises the unsupervised as well as supervised learning algorithms. We demonstrate that it is possible to use the commonly used vector quantization algorithms (LVQ algorithms) to build new algorithms called functional quantization algorithms (LFQ algorithms). The SOMLP can be used to model nonlinear and/or nonstationary complex dynamic processes, such as speech signals. While most of the functional data analysis (FDA) research is based on B-spline or similar univariate functions, the SOMLP algorithm allows quantization of function with high dimensional input space. As a consequence, classical FDA methods can be outperformed by increasing the dimensionality of the input space of the functions under analysis. Experiments on artificial and real world examples are presented which illustrate the potential of this approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>20858579</pmid><doi>10.1109/TNN.2010.2072790</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0000-8938-5565</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2010-11, Vol.21 (11), p.1766-1779
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_762482613
source IEEE Electronic Library (IEL)
subjects Adaptation model
Algorithm design and analysis
Algorithms
Applied sciences
Approximation methods
Artificial Intelligence
Computer Science
Computer science
control theory
systems
Connectionism. Neural networks
Construction
Data processing
Engineering Sciences
Exact sciences and technology
Functional data analysis
Heuristic algorithms
Machine Learning
Mathematical Computing
Mathematical models
multilayer perceptron
Multilayer perceptrons
multivariate functions quantization
Neural and Evolutionary Computing
Neural networks
Neural Networks (Computer)
Neurons
Nonlinear Dynamics
Quantization
Regression analysis
Robotics
self-organizing feature maps
Signal and Image processing
Signal Processing, Computer-Assisted
Speech and sound recognition and synthesis. Linguistics
speech processing
Speech Recognition Software - standards
Studies
Vector quantization
title Self-Organizing MultiLayer Perceptron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Organizing%20MultiLayer%20Perceptron&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Gas,%20Bruno&rft.date=2010-11-01&rft.volume=21&rft.issue=11&rft.spage=1766&rft.epage=1779&rft.pages=1766-1779&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2010.2072790&rft_dat=%3Cproquest_RIE%3E849469398%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030148452&rft_id=info:pmid/20858579&rft_ieee_id=5580080&rfr_iscdi=true