Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers
This study evaluates the efficacy of green design principles such as the “12 Principles of Green Chemistry,” and the “12 Principles of Green Engineering” with respect to environmental impacts found using life cycle assessment (LCA) methodology. A case study of 12 polymers is presented, seven derived...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2010-11, Vol.44 (21), p.8264-8269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8269 |
---|---|
container_issue | 21 |
container_start_page | 8264 |
container_title | Environmental science & technology |
container_volume | 44 |
creator | Tabone, Michaelangelo D. Cregg, James J. Beckman, Eric J. Landis, Amy E. |
description | This study evaluates the efficacy of green design principles such as the “12 Principles of Green Chemistry,” and the “12 Principles of Green Engineering” with respect to environmental impacts found using life cycle assessment (LCA) methodology. A case study of 12 polymers is presented, seven derived from petroleum, four derived from biological sources, and one derived from both. The environmental impacts of each polymer’s production are assessed using LCA methodology standardized by the International Organization for Standardization (ISO). Each polymer is also assessed for its adherence to green design principles using metrics generated specifically for this paper. Metrics include atom economy, mass from renewable sources, biodegradability, percent recycled, distance of furthest feedstock, price, life cycle health hazards and life cycle energy use. A decision matrix is used to generate single value metrics for each polymer evaluating either adherence to green design principles or life-cycle environmental impacts. Results from this study show a qualified positive correlation between adherence to green design principles and a reduction of the environmental impacts of production. The qualification results from a disparity between biopolymers and petroleum polymers. While biopolymers rank highly in terms of green design, they exhibit relatively large environmental impacts from production. Biopolymers rank 1, 2, 3, and 4 based on green design metrics; however they rank in the middle of the LCA rankings. Polyolefins rank 1, 2, and 3 in the LCA rankings, whereas complex polymers, such as PET, PVC, and PC place at the bottom of both ranking systems. |
doi_str_mv | 10.1021/es101640n |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762479326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201615111</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-c397bc66d1e49dcca0c7d259e00d3b18bd02efbf373a2b5f9cd514a463d0ecd93</originalsourceid><addsrcrecordid>eNpl0E9r3DAQBXBRUppNmkO_QBGFEHpwOpJs2c5t2fxr2JJCE8jNyNK4aLHljcY-7LevQ7a7kJzm8uPN4zH2RcC5ACl-IAkQOoXwgc1EJiHJikwcsBmAUEmp9NMhOyJaAYBUUHxihxIKrUEXM3b3Z6TB-GBq3_phw3_hEL2lC770DfLFxrbI50RI1GEYuAmO30TEwC-R_N_AfeC_-3bTYaTP7GNjWsKT7T1mj9dXD4vbZHl_83MxXyYmVfmQWFXmtdXaCUxLZ60BmzuZlQjgVC2K2oHEpm5Uroyss6a0LhOpSbVygNaV6pidveauY_88Ig1V58li25qA_UhVrmWal0rqSX57I1f9GMNUripEJiYnigl9f0U29kQRm2odfWfiphJQvcxb7ead7Ndt4Fh36Hby_54TON0CQ9a0TTTBeto7pQqpSr13xtK-1PuH_wDDvY1r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815162418</pqid></control><display><type>article</type><title>Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Tabone, Michaelangelo D. ; Cregg, James J. ; Beckman, Eric J. ; Landis, Amy E.</creator><creatorcontrib>Tabone, Michaelangelo D. ; Cregg, James J. ; Beckman, Eric J. ; Landis, Amy E.</creatorcontrib><description>This study evaluates the efficacy of green design principles such as the “12 Principles of Green Chemistry,” and the “12 Principles of Green Engineering” with respect to environmental impacts found using life cycle assessment (LCA) methodology. A case study of 12 polymers is presented, seven derived from petroleum, four derived from biological sources, and one derived from both. The environmental impacts of each polymer’s production are assessed using LCA methodology standardized by the International Organization for Standardization (ISO). Each polymer is also assessed for its adherence to green design principles using metrics generated specifically for this paper. Metrics include atom economy, mass from renewable sources, biodegradability, percent recycled, distance of furthest feedstock, price, life cycle health hazards and life cycle energy use. A decision matrix is used to generate single value metrics for each polymer evaluating either adherence to green design principles or life-cycle environmental impacts. Results from this study show a qualified positive correlation between adherence to green design principles and a reduction of the environmental impacts of production. The qualification results from a disparity between biopolymers and petroleum polymers. While biopolymers rank highly in terms of green design, they exhibit relatively large environmental impacts from production. Biopolymers rank 1, 2, 3, and 4 based on green design metrics; however they rank in the middle of the LCA rankings. Polyolefins rank 1, 2, and 3 in the LCA rankings, whereas complex polymers, such as PET, PVC, and PC place at the bottom of both ranking systems.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es101640n</identifier><identifier>PMID: 20866068</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biodegradation, Environmental ; Biopolymers ; Chemical engineering ; Conservation of Natural Resources ; Correlation analysis ; Environmental impact ; Environmental Pollution - prevention & control ; Exact sciences and technology ; Green chemistry ; Green Chemistry Technology - methods ; Life cycles ; Petroleum ; Pollution ; Polyenes - chemical synthesis ; Polyenes - chemistry ; Polymers ; Polymers - chemical synthesis ; Polymers - chemistry ; Studies ; Sustainability Engineering and Green Chemistry</subject><ispartof>Environmental science & technology, 2010-11, Vol.44 (21), p.8264-8269</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-c397bc66d1e49dcca0c7d259e00d3b18bd02efbf373a2b5f9cd514a463d0ecd93</citedby><cites>FETCH-LOGICAL-a437t-c397bc66d1e49dcca0c7d259e00d3b18bd02efbf373a2b5f9cd514a463d0ecd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es101640n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es101640n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23382396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20866068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tabone, Michaelangelo D.</creatorcontrib><creatorcontrib>Cregg, James J.</creatorcontrib><creatorcontrib>Beckman, Eric J.</creatorcontrib><creatorcontrib>Landis, Amy E.</creatorcontrib><title>Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>This study evaluates the efficacy of green design principles such as the “12 Principles of Green Chemistry,” and the “12 Principles of Green Engineering” with respect to environmental impacts found using life cycle assessment (LCA) methodology. A case study of 12 polymers is presented, seven derived from petroleum, four derived from biological sources, and one derived from both. The environmental impacts of each polymer’s production are assessed using LCA methodology standardized by the International Organization for Standardization (ISO). Each polymer is also assessed for its adherence to green design principles using metrics generated specifically for this paper. Metrics include atom economy, mass from renewable sources, biodegradability, percent recycled, distance of furthest feedstock, price, life cycle health hazards and life cycle energy use. A decision matrix is used to generate single value metrics for each polymer evaluating either adherence to green design principles or life-cycle environmental impacts. Results from this study show a qualified positive correlation between adherence to green design principles and a reduction of the environmental impacts of production. The qualification results from a disparity between biopolymers and petroleum polymers. While biopolymers rank highly in terms of green design, they exhibit relatively large environmental impacts from production. Biopolymers rank 1, 2, 3, and 4 based on green design metrics; however they rank in the middle of the LCA rankings. Polyolefins rank 1, 2, and 3 in the LCA rankings, whereas complex polymers, such as PET, PVC, and PC place at the bottom of both ranking systems.</description><subject>Applied sciences</subject><subject>Biodegradation, Environmental</subject><subject>Biopolymers</subject><subject>Chemical engineering</subject><subject>Conservation of Natural Resources</subject><subject>Correlation analysis</subject><subject>Environmental impact</subject><subject>Environmental Pollution - prevention & control</subject><subject>Exact sciences and technology</subject><subject>Green chemistry</subject><subject>Green Chemistry Technology - methods</subject><subject>Life cycles</subject><subject>Petroleum</subject><subject>Pollution</subject><subject>Polyenes - chemical synthesis</subject><subject>Polyenes - chemistry</subject><subject>Polymers</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Studies</subject><subject>Sustainability Engineering and Green Chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E9r3DAQBXBRUppNmkO_QBGFEHpwOpJs2c5t2fxr2JJCE8jNyNK4aLHljcY-7LevQ7a7kJzm8uPN4zH2RcC5ACl-IAkQOoXwgc1EJiHJikwcsBmAUEmp9NMhOyJaAYBUUHxihxIKrUEXM3b3Z6TB-GBq3_phw3_hEL2lC770DfLFxrbI50RI1GEYuAmO30TEwC-R_N_AfeC_-3bTYaTP7GNjWsKT7T1mj9dXD4vbZHl_83MxXyYmVfmQWFXmtdXaCUxLZ60BmzuZlQjgVC2K2oHEpm5Uroyss6a0LhOpSbVygNaV6pidveauY_88Ig1V58li25qA_UhVrmWal0rqSX57I1f9GMNUripEJiYnigl9f0U29kQRm2odfWfiphJQvcxb7ead7Ndt4Fh36Hby_54TON0CQ9a0TTTBeto7pQqpSr13xtK-1PuH_wDDvY1r</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Tabone, Michaelangelo D.</creator><creator>Cregg, James J.</creator><creator>Beckman, Eric J.</creator><creator>Landis, Amy E.</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20101101</creationdate><title>Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers</title><author>Tabone, Michaelangelo D. ; Cregg, James J. ; Beckman, Eric J. ; Landis, Amy E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-c397bc66d1e49dcca0c7d259e00d3b18bd02efbf373a2b5f9cd514a463d0ecd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Biodegradation, Environmental</topic><topic>Biopolymers</topic><topic>Chemical engineering</topic><topic>Conservation of Natural Resources</topic><topic>Correlation analysis</topic><topic>Environmental impact</topic><topic>Environmental Pollution - prevention & control</topic><topic>Exact sciences and technology</topic><topic>Green chemistry</topic><topic>Green Chemistry Technology - methods</topic><topic>Life cycles</topic><topic>Petroleum</topic><topic>Pollution</topic><topic>Polyenes - chemical synthesis</topic><topic>Polyenes - chemistry</topic><topic>Polymers</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Studies</topic><topic>Sustainability Engineering and Green Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabone, Michaelangelo D.</creatorcontrib><creatorcontrib>Cregg, James J.</creatorcontrib><creatorcontrib>Beckman, Eric J.</creatorcontrib><creatorcontrib>Landis, Amy E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabone, Michaelangelo D.</au><au>Cregg, James J.</au><au>Beckman, Eric J.</au><au>Landis, Amy E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>44</volume><issue>21</issue><spage>8264</spage><epage>8269</epage><pages>8264-8269</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>This study evaluates the efficacy of green design principles such as the “12 Principles of Green Chemistry,” and the “12 Principles of Green Engineering” with respect to environmental impacts found using life cycle assessment (LCA) methodology. A case study of 12 polymers is presented, seven derived from petroleum, four derived from biological sources, and one derived from both. The environmental impacts of each polymer’s production are assessed using LCA methodology standardized by the International Organization for Standardization (ISO). Each polymer is also assessed for its adherence to green design principles using metrics generated specifically for this paper. Metrics include atom economy, mass from renewable sources, biodegradability, percent recycled, distance of furthest feedstock, price, life cycle health hazards and life cycle energy use. A decision matrix is used to generate single value metrics for each polymer evaluating either adherence to green design principles or life-cycle environmental impacts. Results from this study show a qualified positive correlation between adherence to green design principles and a reduction of the environmental impacts of production. The qualification results from a disparity between biopolymers and petroleum polymers. While biopolymers rank highly in terms of green design, they exhibit relatively large environmental impacts from production. Biopolymers rank 1, 2, 3, and 4 based on green design metrics; however they rank in the middle of the LCA rankings. Polyolefins rank 1, 2, and 3 in the LCA rankings, whereas complex polymers, such as PET, PVC, and PC place at the bottom of both ranking systems.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20866068</pmid><doi>10.1021/es101640n</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2010-11, Vol.44 (21), p.8264-8269 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_762479326 |
source | MEDLINE; American Chemical Society Journals |
subjects | Applied sciences Biodegradation, Environmental Biopolymers Chemical engineering Conservation of Natural Resources Correlation analysis Environmental impact Environmental Pollution - prevention & control Exact sciences and technology Green chemistry Green Chemistry Technology - methods Life cycles Petroleum Pollution Polyenes - chemical synthesis Polyenes - chemistry Polymers Polymers - chemical synthesis Polymers - chemistry Studies Sustainability Engineering and Green Chemistry |
title | Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainability%20Metrics:%20Life%20Cycle%20Assessment%20and%20Green%20Design%20in%20Polymers&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Tabone,%20Michaelangelo%20D.&rft.date=2010-11-01&rft.volume=44&rft.issue=21&rft.spage=8264&rft.epage=8269&rft.pages=8264-8269&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es101640n&rft_dat=%3Cproquest_cross%3E2201615111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815162418&rft_id=info:pmid/20866068&rfr_iscdi=true |