Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RO Membrane Performance

Herein we report on the formation and characterization of pure polyamide thin film composite (TFC) and zeolite−polyamide thin film nanocomposite (TFN) reverse osmosis (RO) membranes. Four different physical−chemical post-treatment combinations were applied after the interfacial polymerization reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2010-11, Vol.44 (21), p.8230-8235
Hauptverfasser: Lind, Mary Laura, Eumine Suk, Daniel, Nguyen, The-Vinh, Hoek, Eric M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8235
container_issue 21
container_start_page 8230
container_title Environmental science & technology
container_volume 44
creator Lind, Mary Laura
Eumine Suk, Daniel
Nguyen, The-Vinh
Hoek, Eric M. V.
description Herein we report on the formation and characterization of pure polyamide thin film composite (TFC) and zeolite−polyamide thin film nanocomposite (TFN) reverse osmosis (RO) membranes. Four different physical−chemical post-treatment combinations were applied after the interfacial polymerization reaction to change the molecular structure of polyamide and zeolite−polyamide thin films. Both TFC and TFN hand-cast membranes were more permeable, hydrophilic, and rough than a commercial seawater RO membrane. Salt rejection by TFN membranes was consistently below that of hand-cast TFC membranes; however, two TFN membranes exhibited 32 g/L NaCl rejections above 99.4%, which was better than the commercial membrane under the test conditions employed. The nearly defect-free TFN films that produced such high rejections were achieved only with wet curing, regardless of other post-treatments. Polyamide films formed in the presence of zeolite nanoparticles were less cross-linked than similarly cast pure polyamide films. At the very low nanoparticle loadings evaluated, differences between pure polyamide and zeolite−polyamide membrane water and salt permeability correlated weakly with extent of cross-linking of the polyamide film, which suggests that defects and molecular-sieving largely govern transport through zeolite−polyamide thin film nanocomposite membranes.
doi_str_mv 10.1021/es101569p
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762470040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762470040</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-1588a5da4f47d120d051d85bf9fd39262d7b3db6d424fead112f10b275bdf3bd3</originalsourceid><addsrcrecordid>eNpl0E1P3DAQBmALFcFCe-APVBZShXoInbHjxDkiVNpKUKp2K3GLHH90jZJ4aydU_fe4YtmV6Gkuz8y8egk5QThHYPjBJgQUVbPeIwsUDAohBb4iCwDkRcOru0NylNI9ADAO8oAcMmhKxhu5IKul8n2IfvxFp5WlP6Y462mOlgZHlys_0ivfD_SrGoMOwzokP1l6Y4cuqtEmOgV6oVfePuRNq_6oyUb6_XYL6DcbXYiDGrV9Tfad6pN9s5nH5OfVx-Xl5-L69tOXy4vrQnHZTAUKKZUwqnRlbZCBAYFGis41zvCGVczUHTddZUpWOqsMInMIHatFZxzvDD8mZ0931zH8nm2a2sEnbfs-5wlzauuKlTVACVmevpD3YY5jDtdKFJidZBm9f0I6hpSide06-kHFvy1C-6_8dlt-tm83B-dusGYrn9vO4N0GqKRV73JH2qed4zx_bGDnlE67UP8_fARbJJgS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815162482</pqid></control><display><type>article</type><title>Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RO Membrane Performance</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lind, Mary Laura ; Eumine Suk, Daniel ; Nguyen, The-Vinh ; Hoek, Eric M. V.</creator><creatorcontrib>Lind, Mary Laura ; Eumine Suk, Daniel ; Nguyen, The-Vinh ; Hoek, Eric M. V.</creatorcontrib><description>Herein we report on the formation and characterization of pure polyamide thin film composite (TFC) and zeolite−polyamide thin film nanocomposite (TFN) reverse osmosis (RO) membranes. Four different physical−chemical post-treatment combinations were applied after the interfacial polymerization reaction to change the molecular structure of polyamide and zeolite−polyamide thin films. Both TFC and TFN hand-cast membranes were more permeable, hydrophilic, and rough than a commercial seawater RO membrane. Salt rejection by TFN membranes was consistently below that of hand-cast TFC membranes; however, two TFN membranes exhibited 32 g/L NaCl rejections above 99.4%, which was better than the commercial membrane under the test conditions employed. The nearly defect-free TFN films that produced such high rejections were achieved only with wet curing, regardless of other post-treatments. Polyamide films formed in the presence of zeolite nanoparticles were less cross-linked than similarly cast pure polyamide films. At the very low nanoparticle loadings evaluated, differences between pure polyamide and zeolite−polyamide membrane water and salt permeability correlated weakly with extent of cross-linking of the polyamide film, which suggests that defects and molecular-sieving largely govern transport through zeolite−polyamide thin film nanocomposite membranes.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es101569p</identifier><identifier>PMID: 20942398</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Filtration - methods ; Hydrophilic surfaces ; Membranes ; Molecular structure ; Nanocomposites ; Nanocomposites - chemistry ; Nylons - chemistry ; Osmosis ; Pollution ; Polyamines ; Polymerization ; Remediation and Control Technologies ; Seawater ; Seawater - chemistry ; Thin films ; Water Purification - methods ; Zeolites ; Zeolites - chemistry</subject><ispartof>Environmental science &amp; technology, 2010-11, Vol.44 (21), p.8230-8235</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-1588a5da4f47d120d051d85bf9fd39262d7b3db6d424fead112f10b275bdf3bd3</citedby><cites>FETCH-LOGICAL-a389t-1588a5da4f47d120d051d85bf9fd39262d7b3db6d424fead112f10b275bdf3bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es101569p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es101569p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23382390$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20942398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lind, Mary Laura</creatorcontrib><creatorcontrib>Eumine Suk, Daniel</creatorcontrib><creatorcontrib>Nguyen, The-Vinh</creatorcontrib><creatorcontrib>Hoek, Eric M. V.</creatorcontrib><title>Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RO Membrane Performance</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Herein we report on the formation and characterization of pure polyamide thin film composite (TFC) and zeolite−polyamide thin film nanocomposite (TFN) reverse osmosis (RO) membranes. Four different physical−chemical post-treatment combinations were applied after the interfacial polymerization reaction to change the molecular structure of polyamide and zeolite−polyamide thin films. Both TFC and TFN hand-cast membranes were more permeable, hydrophilic, and rough than a commercial seawater RO membrane. Salt rejection by TFN membranes was consistently below that of hand-cast TFC membranes; however, two TFN membranes exhibited 32 g/L NaCl rejections above 99.4%, which was better than the commercial membrane under the test conditions employed. The nearly defect-free TFN films that produced such high rejections were achieved only with wet curing, regardless of other post-treatments. Polyamide films formed in the presence of zeolite nanoparticles were less cross-linked than similarly cast pure polyamide films. At the very low nanoparticle loadings evaluated, differences between pure polyamide and zeolite−polyamide membrane water and salt permeability correlated weakly with extent of cross-linking of the polyamide film, which suggests that defects and molecular-sieving largely govern transport through zeolite−polyamide thin film nanocomposite membranes.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Filtration - methods</subject><subject>Hydrophilic surfaces</subject><subject>Membranes</subject><subject>Molecular structure</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nylons - chemistry</subject><subject>Osmosis</subject><subject>Pollution</subject><subject>Polyamines</subject><subject>Polymerization</subject><subject>Remediation and Control Technologies</subject><subject>Seawater</subject><subject>Seawater - chemistry</subject><subject>Thin films</subject><subject>Water Purification - methods</subject><subject>Zeolites</subject><subject>Zeolites - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1P3DAQBmALFcFCe-APVBZShXoInbHjxDkiVNpKUKp2K3GLHH90jZJ4aydU_fe4YtmV6Gkuz8y8egk5QThHYPjBJgQUVbPeIwsUDAohBb4iCwDkRcOru0NylNI9ADAO8oAcMmhKxhu5IKul8n2IfvxFp5WlP6Y462mOlgZHlys_0ivfD_SrGoMOwzokP1l6Y4cuqtEmOgV6oVfePuRNq_6oyUb6_XYL6DcbXYiDGrV9Tfad6pN9s5nH5OfVx-Xl5-L69tOXy4vrQnHZTAUKKZUwqnRlbZCBAYFGis41zvCGVczUHTddZUpWOqsMInMIHatFZxzvDD8mZ0931zH8nm2a2sEnbfs-5wlzauuKlTVACVmevpD3YY5jDtdKFJidZBm9f0I6hpSide06-kHFvy1C-6_8dlt-tm83B-dusGYrn9vO4N0GqKRV73JH2qed4zx_bGDnlE67UP8_fARbJJgS</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Lind, Mary Laura</creator><creator>Eumine Suk, Daniel</creator><creator>Nguyen, The-Vinh</creator><creator>Hoek, Eric M. V.</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20101101</creationdate><title>Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RO Membrane Performance</title><author>Lind, Mary Laura ; Eumine Suk, Daniel ; Nguyen, The-Vinh ; Hoek, Eric M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-1588a5da4f47d120d051d85bf9fd39262d7b3db6d424fead112f10b275bdf3bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Filtration - methods</topic><topic>Hydrophilic surfaces</topic><topic>Membranes</topic><topic>Molecular structure</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nylons - chemistry</topic><topic>Osmosis</topic><topic>Pollution</topic><topic>Polyamines</topic><topic>Polymerization</topic><topic>Remediation and Control Technologies</topic><topic>Seawater</topic><topic>Seawater - chemistry</topic><topic>Thin films</topic><topic>Water Purification - methods</topic><topic>Zeolites</topic><topic>Zeolites - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lind, Mary Laura</creatorcontrib><creatorcontrib>Eumine Suk, Daniel</creatorcontrib><creatorcontrib>Nguyen, The-Vinh</creatorcontrib><creatorcontrib>Hoek, Eric M. V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lind, Mary Laura</au><au>Eumine Suk, Daniel</au><au>Nguyen, The-Vinh</au><au>Hoek, Eric M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RO Membrane Performance</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>44</volume><issue>21</issue><spage>8230</spage><epage>8235</epage><pages>8230-8235</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Herein we report on the formation and characterization of pure polyamide thin film composite (TFC) and zeolite−polyamide thin film nanocomposite (TFN) reverse osmosis (RO) membranes. Four different physical−chemical post-treatment combinations were applied after the interfacial polymerization reaction to change the molecular structure of polyamide and zeolite−polyamide thin films. Both TFC and TFN hand-cast membranes were more permeable, hydrophilic, and rough than a commercial seawater RO membrane. Salt rejection by TFN membranes was consistently below that of hand-cast TFC membranes; however, two TFN membranes exhibited 32 g/L NaCl rejections above 99.4%, which was better than the commercial membrane under the test conditions employed. The nearly defect-free TFN films that produced such high rejections were achieved only with wet curing, regardless of other post-treatments. Polyamide films formed in the presence of zeolite nanoparticles were less cross-linked than similarly cast pure polyamide films. At the very low nanoparticle loadings evaluated, differences between pure polyamide and zeolite−polyamide membrane water and salt permeability correlated weakly with extent of cross-linking of the polyamide film, which suggests that defects and molecular-sieving largely govern transport through zeolite−polyamide thin film nanocomposite membranes.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20942398</pmid><doi>10.1021/es101569p</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2010-11, Vol.44 (21), p.8230-8235
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_762470040
source MEDLINE; ACS Publications
subjects Applied sciences
Exact sciences and technology
Filtration - methods
Hydrophilic surfaces
Membranes
Molecular structure
Nanocomposites
Nanocomposites - chemistry
Nylons - chemistry
Osmosis
Pollution
Polyamines
Polymerization
Remediation and Control Technologies
Seawater
Seawater - chemistry
Thin films
Water Purification - methods
Zeolites
Zeolites - chemistry
title Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RO Membrane Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20the%20Structure%20of%20Thin%20Film%20Nanocomposite%20Membranes%20to%20Achieve%20Seawater%20RO%20Membrane%20Performance&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Lind,%20Mary%20Laura&rft.date=2010-11-01&rft.volume=44&rft.issue=21&rft.spage=8230&rft.epage=8235&rft.pages=8230-8235&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es101569p&rft_dat=%3Cproquest_cross%3E762470040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815162482&rft_id=info:pmid/20942398&rfr_iscdi=true