Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity

Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1985-08, Vol.229 (4714), p.661-665
Hauptverfasser: Findsen, E. W., Friedman, J. M., Ondrias, M. R., Simon, S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 665
container_issue 4714
container_start_page 661
container_title Science (American Association for the Advancement of Science)
container_volume 229
creator Findsen, E. W.
Friedman, J. M.
Ondrias, M. R.
Simon, S. R.
description Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak frequencies in the spectrum of the deoxy transient were the same at approximately 25 picoseconds as those observed at 10 nanoseconds subsequent to photodissociation. In particular, the large R-T differences in the frequency of the stretching mode for the iron-proximal histidine bond (v$_{Fe-His}$) detected in previously reported nanosecond-resolved spectra were also evident in the picosecond-resolved spectra. The implications of this finding with respect to the distribution of strain energy in the liganded protein and the origin of the time course for geminate recombination are discussed. On the basis of these results, a microscopic model is proposed in which delocalization of strain energy is strongly coupled to the coordinate of the iron. The model is used to explain the origin of the R-T differences in the rates of ligand dissociation.
doi_str_mv 10.1126/science.4023704
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_76239731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A3897161</galeid><jstor_id>1695856</jstor_id><sourcerecordid>A3897161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-315679004715646777ebece61301a5c367c61ed60e1c0b73ff1b2a8f1fd680063</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpSTdpz7204EPppTiZsSzJzi0sTRMIpKTprSBkebwoyNbW0obm31fLmuTY0wy8b94M8xj7gHCKWMmzaB1Nlk5rqLiC-hVbIbSibCvgr9kKgMuyASXesuMYHwCy1vIjdrTgK_b7h7Mhkg1TX9y7kcryjmLwj9QX-2Yy2by4M6OZip9p1zuKRRiKKxrDxofOTefF9bj1zprkwhSLIcx5ztjkHl16esfeDMZHer_UE_br8tv9-qq8uf1-vb64Ka0AkUqOQqoWoFa5qaVSijqyJJEDGmG5VFYi9RIILXSKDwN2lWkGHHrZAEh-wr4cfLdz-LOjmPTooiXvzURhF7WSFW8Vx_-CWGOLgE0Gvx7AjfGk3ZT_k-hvssF72pDO169v9QVvWoVyb3t2oO0cYpxp0NvZjWZ-0gh6H5NeYtLL3_PEp-WQXTdS_8y_6J8X3URr_DDnHFx8xhqhBKoqYx8P2ENMYX7ZKlvRCMn_ASLQo7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14191018</pqid></control><display><type>article</type><title>Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><source>JSTOR</source><creator>Findsen, E. W. ; Friedman, J. M. ; Ondrias, M. R. ; Simon, S. R.</creator><creatorcontrib>Findsen, E. W. ; Friedman, J. M. ; Ondrias, M. R. ; Simon, S. R.</creatorcontrib><description>Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak frequencies in the spectrum of the deoxy transient were the same at approximately 25 picoseconds as those observed at 10 nanoseconds subsequent to photodissociation. In particular, the large R-T differences in the frequency of the stretching mode for the iron-proximal histidine bond (v$_{Fe-His}$) detected in previously reported nanosecond-resolved spectra were also evident in the picosecond-resolved spectra. The implications of this finding with respect to the distribution of strain energy in the liganded protein and the origin of the time course for geminate recombination are discussed. On the basis of these results, a microscopic model is proposed in which delocalization of strain energy is strongly coupled to the coordinate of the iron. The model is used to explain the origin of the R-T differences in the rates of ligand dissociation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.4023704</identifier><identifier>PMID: 4023704</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>Allosteric Regulation ; Biochemistry ; Biological and medical sciences ; Coordinate systems ; Fundamental and applied biological sciences. Psychology ; Geometric planes ; Hemoglobin ; Hemoglobin A ; Hemoglobins ; Humans ; Ligands ; Ligation ; Molecular biophysics ; Motion ; Oxygen ; Photolysis ; Protein Conformation ; Raman scattering ; Raman spectroscopy ; Spectroscopy : techniques and spectras ; Spectrum Analysis, Raman ; Structure-Activity Relationship ; Thermodynamics ; Torque</subject><ispartof>Science (American Association for the Advancement of Science), 1985-08, Vol.229 (4714), p.661-665</ispartof><rights>Copyright 1985 The American Association for the Advancement of Science</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-315679004715646777ebece61301a5c367c61ed60e1c0b73ff1b2a8f1fd680063</citedby><cites>FETCH-LOGICAL-c505t-315679004715646777ebece61301a5c367c61ed60e1c0b73ff1b2a8f1fd680063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1695856$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1695856$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2875,2876,27915,27916,58008,58241</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8575172$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/4023704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Findsen, E. W.</creatorcontrib><creatorcontrib>Friedman, J. M.</creatorcontrib><creatorcontrib>Ondrias, M. R.</creatorcontrib><creatorcontrib>Simon, S. R.</creatorcontrib><title>Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak frequencies in the spectrum of the deoxy transient were the same at approximately 25 picoseconds as those observed at 10 nanoseconds subsequent to photodissociation. In particular, the large R-T differences in the frequency of the stretching mode for the iron-proximal histidine bond (v$_{Fe-His}$) detected in previously reported nanosecond-resolved spectra were also evident in the picosecond-resolved spectra. The implications of this finding with respect to the distribution of strain energy in the liganded protein and the origin of the time course for geminate recombination are discussed. On the basis of these results, a microscopic model is proposed in which delocalization of strain energy is strongly coupled to the coordinate of the iron. The model is used to explain the origin of the R-T differences in the rates of ligand dissociation.</description><subject>Allosteric Regulation</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Coordinate systems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geometric planes</subject><subject>Hemoglobin</subject><subject>Hemoglobin A</subject><subject>Hemoglobins</subject><subject>Humans</subject><subject>Ligands</subject><subject>Ligation</subject><subject>Molecular biophysics</subject><subject>Motion</subject><subject>Oxygen</subject><subject>Photolysis</subject><subject>Protein Conformation</subject><subject>Raman scattering</subject><subject>Raman spectroscopy</subject><subject>Spectroscopy : techniques and spectras</subject><subject>Spectrum Analysis, Raman</subject><subject>Structure-Activity Relationship</subject><subject>Thermodynamics</subject><subject>Torque</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFr3DAQhUVpSTdpz7204EPppTiZsSzJzi0sTRMIpKTprSBkebwoyNbW0obm31fLmuTY0wy8b94M8xj7gHCKWMmzaB1Nlk5rqLiC-hVbIbSibCvgr9kKgMuyASXesuMYHwCy1vIjdrTgK_b7h7Mhkg1TX9y7kcryjmLwj9QX-2Yy2by4M6OZip9p1zuKRRiKKxrDxofOTefF9bj1zprkwhSLIcx5ztjkHl16esfeDMZHer_UE_br8tv9-qq8uf1-vb64Ka0AkUqOQqoWoFa5qaVSijqyJJEDGmG5VFYi9RIILXSKDwN2lWkGHHrZAEh-wr4cfLdz-LOjmPTooiXvzURhF7WSFW8Vx_-CWGOLgE0Gvx7AjfGk3ZT_k-hvssF72pDO169v9QVvWoVyb3t2oO0cYpxp0NvZjWZ-0gh6H5NeYtLL3_PEp-WQXTdS_8y_6J8X3URr_DDnHFx8xhqhBKoqYx8P2ENMYX7ZKlvRCMn_ASLQo7w</recordid><startdate>19850816</startdate><enddate>19850816</enddate><creator>Findsen, E. W.</creator><creator>Friedman, J. M.</creator><creator>Ondrias, M. R.</creator><creator>Simon, S. R.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19850816</creationdate><title>Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity</title><author>Findsen, E. W. ; Friedman, J. M. ; Ondrias, M. R. ; Simon, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-315679004715646777ebece61301a5c367c61ed60e1c0b73ff1b2a8f1fd680063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Allosteric Regulation</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Coordinate systems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geometric planes</topic><topic>Hemoglobin</topic><topic>Hemoglobin A</topic><topic>Hemoglobins</topic><topic>Humans</topic><topic>Ligands</topic><topic>Ligation</topic><topic>Molecular biophysics</topic><topic>Motion</topic><topic>Oxygen</topic><topic>Photolysis</topic><topic>Protein Conformation</topic><topic>Raman scattering</topic><topic>Raman spectroscopy</topic><topic>Spectroscopy : techniques and spectras</topic><topic>Spectrum Analysis, Raman</topic><topic>Structure-Activity Relationship</topic><topic>Thermodynamics</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Findsen, E. W.</creatorcontrib><creatorcontrib>Friedman, J. M.</creatorcontrib><creatorcontrib>Ondrias, M. R.</creatorcontrib><creatorcontrib>Simon, S. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Findsen, E. W.</au><au>Friedman, J. M.</au><au>Ondrias, M. R.</au><au>Simon, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1985-08-16</date><risdate>1985</risdate><volume>229</volume><issue>4714</issue><spage>661</spage><epage>665</epage><pages>661-665</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak frequencies in the spectrum of the deoxy transient were the same at approximately 25 picoseconds as those observed at 10 nanoseconds subsequent to photodissociation. In particular, the large R-T differences in the frequency of the stretching mode for the iron-proximal histidine bond (v$_{Fe-His}$) detected in previously reported nanosecond-resolved spectra were also evident in the picosecond-resolved spectra. The implications of this finding with respect to the distribution of strain energy in the liganded protein and the origin of the time course for geminate recombination are discussed. On the basis of these results, a microscopic model is proposed in which delocalization of strain energy is strongly coupled to the coordinate of the iron. The model is used to explain the origin of the R-T differences in the rates of ligand dissociation.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>4023704</pmid><doi>10.1126/science.4023704</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1985-08, Vol.229 (4714), p.661-665
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_76239731
source American Association for the Advancement of Science; MEDLINE; JSTOR
subjects Allosteric Regulation
Biochemistry
Biological and medical sciences
Coordinate systems
Fundamental and applied biological sciences. Psychology
Geometric planes
Hemoglobin
Hemoglobin A
Hemoglobins
Humans
Ligands
Ligation
Molecular biophysics
Motion
Oxygen
Photolysis
Protein Conformation
Raman scattering
Raman spectroscopy
Spectroscopy : techniques and spectras
Spectrum Analysis, Raman
Structure-Activity Relationship
Thermodynamics
Torque
title Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Picosecond%20Time--Resolved%20Resonance%20Raman%20Studies%20of%20Hemoglobin:%20Implications%20for%20Reactivity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Findsen,%20E.%20W.&rft.date=1985-08-16&rft.volume=229&rft.issue=4714&rft.spage=661&rft.epage=665&rft.pages=661-665&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.4023704&rft_dat=%3Cgale_proqu%3EA3897161%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14191018&rft_id=info:pmid/4023704&rft_galeid=A3897161&rft_jstor_id=1695856&rfr_iscdi=true