Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity
Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak f...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1985-08, Vol.229 (4714), p.661-665 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | 4714 |
container_start_page | 661 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 229 |
creator | Findsen, E. W. Friedman, J. M. Ondrias, M. R. Simon, S. R. |
description | Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak frequencies in the spectrum of the deoxy transient were the same at approximately 25 picoseconds as those observed at 10 nanoseconds subsequent to photodissociation. In particular, the large R-T differences in the frequency of the stretching mode for the iron-proximal histidine bond (v$_{Fe-His}$) detected in previously reported nanosecond-resolved spectra were also evident in the picosecond-resolved spectra. The implications of this finding with respect to the distribution of strain energy in the liganded protein and the origin of the time course for geminate recombination are discussed. On the basis of these results, a microscopic model is proposed in which delocalization of strain energy is strongly coupled to the coordinate of the iron. The model is used to explain the origin of the R-T differences in the rates of ligand dissociation. |
doi_str_mv | 10.1126/science.4023704 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_76239731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A3897161</galeid><jstor_id>1695856</jstor_id><sourcerecordid>A3897161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-315679004715646777ebece61301a5c367c61ed60e1c0b73ff1b2a8f1fd680063</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVpSTdpz7204EPppTiZsSzJzi0sTRMIpKTprSBkebwoyNbW0obm31fLmuTY0wy8b94M8xj7gHCKWMmzaB1Nlk5rqLiC-hVbIbSibCvgr9kKgMuyASXesuMYHwCy1vIjdrTgK_b7h7Mhkg1TX9y7kcryjmLwj9QX-2Yy2by4M6OZip9p1zuKRRiKKxrDxofOTefF9bj1zprkwhSLIcx5ztjkHl16esfeDMZHer_UE_br8tv9-qq8uf1-vb64Ka0AkUqOQqoWoFa5qaVSijqyJJEDGmG5VFYi9RIILXSKDwN2lWkGHHrZAEh-wr4cfLdz-LOjmPTooiXvzURhF7WSFW8Vx_-CWGOLgE0Gvx7AjfGk3ZT_k-hvssF72pDO169v9QVvWoVyb3t2oO0cYpxp0NvZjWZ-0gh6H5NeYtLL3_PEp-WQXTdS_8y_6J8X3URr_DDnHFx8xhqhBKoqYx8P2ENMYX7ZKlvRCMn_ASLQo7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14191018</pqid></control><display><type>article</type><title>Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><source>JSTOR</source><creator>Findsen, E. W. ; Friedman, J. M. ; Ondrias, M. R. ; Simon, S. R.</creator><creatorcontrib>Findsen, E. W. ; Friedman, J. M. ; Ondrias, M. R. ; Simon, S. R.</creatorcontrib><description>Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak frequencies in the spectrum of the deoxy transient were the same at approximately 25 picoseconds as those observed at 10 nanoseconds subsequent to photodissociation. In particular, the large R-T differences in the frequency of the stretching mode for the iron-proximal histidine bond (v$_{Fe-His}$) detected in previously reported nanosecond-resolved spectra were also evident in the picosecond-resolved spectra. The implications of this finding with respect to the distribution of strain energy in the liganded protein and the origin of the time course for geminate recombination are discussed. On the basis of these results, a microscopic model is proposed in which delocalization of strain energy is strongly coupled to the coordinate of the iron. The model is used to explain the origin of the R-T differences in the rates of ligand dissociation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.4023704</identifier><identifier>PMID: 4023704</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>Allosteric Regulation ; Biochemistry ; Biological and medical sciences ; Coordinate systems ; Fundamental and applied biological sciences. Psychology ; Geometric planes ; Hemoglobin ; Hemoglobin A ; Hemoglobins ; Humans ; Ligands ; Ligation ; Molecular biophysics ; Motion ; Oxygen ; Photolysis ; Protein Conformation ; Raman scattering ; Raman spectroscopy ; Spectroscopy : techniques and spectras ; Spectrum Analysis, Raman ; Structure-Activity Relationship ; Thermodynamics ; Torque</subject><ispartof>Science (American Association for the Advancement of Science), 1985-08, Vol.229 (4714), p.661-665</ispartof><rights>Copyright 1985 The American Association for the Advancement of Science</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-315679004715646777ebece61301a5c367c61ed60e1c0b73ff1b2a8f1fd680063</citedby><cites>FETCH-LOGICAL-c505t-315679004715646777ebece61301a5c367c61ed60e1c0b73ff1b2a8f1fd680063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1695856$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1695856$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2875,2876,27915,27916,58008,58241</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8575172$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/4023704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Findsen, E. W.</creatorcontrib><creatorcontrib>Friedman, J. M.</creatorcontrib><creatorcontrib>Ondrias, M. R.</creatorcontrib><creatorcontrib>Simon, S. R.</creatorcontrib><title>Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak frequencies in the spectrum of the deoxy transient were the same at approximately 25 picoseconds as those observed at 10 nanoseconds subsequent to photodissociation. In particular, the large R-T differences in the frequency of the stretching mode for the iron-proximal histidine bond (v$_{Fe-His}$) detected in previously reported nanosecond-resolved spectra were also evident in the picosecond-resolved spectra. The implications of this finding with respect to the distribution of strain energy in the liganded protein and the origin of the time course for geminate recombination are discussed. On the basis of these results, a microscopic model is proposed in which delocalization of strain energy is strongly coupled to the coordinate of the iron. The model is used to explain the origin of the R-T differences in the rates of ligand dissociation.</description><subject>Allosteric Regulation</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Coordinate systems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geometric planes</subject><subject>Hemoglobin</subject><subject>Hemoglobin A</subject><subject>Hemoglobins</subject><subject>Humans</subject><subject>Ligands</subject><subject>Ligation</subject><subject>Molecular biophysics</subject><subject>Motion</subject><subject>Oxygen</subject><subject>Photolysis</subject><subject>Protein Conformation</subject><subject>Raman scattering</subject><subject>Raman spectroscopy</subject><subject>Spectroscopy : techniques and spectras</subject><subject>Spectrum Analysis, Raman</subject><subject>Structure-Activity Relationship</subject><subject>Thermodynamics</subject><subject>Torque</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFr3DAQhUVpSTdpz7204EPppTiZsSzJzi0sTRMIpKTprSBkebwoyNbW0obm31fLmuTY0wy8b94M8xj7gHCKWMmzaB1Nlk5rqLiC-hVbIbSibCvgr9kKgMuyASXesuMYHwCy1vIjdrTgK_b7h7Mhkg1TX9y7kcryjmLwj9QX-2Yy2by4M6OZip9p1zuKRRiKKxrDxofOTefF9bj1zprkwhSLIcx5ztjkHl16esfeDMZHer_UE_br8tv9-qq8uf1-vb64Ka0AkUqOQqoWoFa5qaVSijqyJJEDGmG5VFYi9RIILXSKDwN2lWkGHHrZAEh-wr4cfLdz-LOjmPTooiXvzURhF7WSFW8Vx_-CWGOLgE0Gvx7AjfGk3ZT_k-hvssF72pDO169v9QVvWoVyb3t2oO0cYpxp0NvZjWZ-0gh6H5NeYtLL3_PEp-WQXTdS_8y_6J8X3URr_DDnHFx8xhqhBKoqYx8P2ENMYX7ZKlvRCMn_ASLQo7w</recordid><startdate>19850816</startdate><enddate>19850816</enddate><creator>Findsen, E. W.</creator><creator>Friedman, J. M.</creator><creator>Ondrias, M. R.</creator><creator>Simon, S. R.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19850816</creationdate><title>Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity</title><author>Findsen, E. W. ; Friedman, J. M. ; Ondrias, M. R. ; Simon, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-315679004715646777ebece61301a5c367c61ed60e1c0b73ff1b2a8f1fd680063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Allosteric Regulation</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Coordinate systems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geometric planes</topic><topic>Hemoglobin</topic><topic>Hemoglobin A</topic><topic>Hemoglobins</topic><topic>Humans</topic><topic>Ligands</topic><topic>Ligation</topic><topic>Molecular biophysics</topic><topic>Motion</topic><topic>Oxygen</topic><topic>Photolysis</topic><topic>Protein Conformation</topic><topic>Raman scattering</topic><topic>Raman spectroscopy</topic><topic>Spectroscopy : techniques and spectras</topic><topic>Spectrum Analysis, Raman</topic><topic>Structure-Activity Relationship</topic><topic>Thermodynamics</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Findsen, E. W.</creatorcontrib><creatorcontrib>Friedman, J. M.</creatorcontrib><creatorcontrib>Ondrias, M. R.</creatorcontrib><creatorcontrib>Simon, S. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Findsen, E. W.</au><au>Friedman, J. M.</au><au>Ondrias, M. R.</au><au>Simon, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1985-08-16</date><risdate>1985</risdate><volume>229</volume><issue>4714</issue><spage>661</spage><epage>665</epage><pages>661-665</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Picosecond time--resolved Raman spectra of hemoglobin generated with blue pulses (20 to 30 picoseconds) that were resonant with the Soret band and of sufficient intensity to completely photodissociate the starting liganded sample are reported. For both R- and T-state liganded hemoglobins, the peak frequencies in the spectrum of the deoxy transient were the same at approximately 25 picoseconds as those observed at 10 nanoseconds subsequent to photodissociation. In particular, the large R-T differences in the frequency of the stretching mode for the iron-proximal histidine bond (v$_{Fe-His}$) detected in previously reported nanosecond-resolved spectra were also evident in the picosecond-resolved spectra. The implications of this finding with respect to the distribution of strain energy in the liganded protein and the origin of the time course for geminate recombination are discussed. On the basis of these results, a microscopic model is proposed in which delocalization of strain energy is strongly coupled to the coordinate of the iron. The model is used to explain the origin of the R-T differences in the rates of ligand dissociation.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>4023704</pmid><doi>10.1126/science.4023704</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1985-08, Vol.229 (4714), p.661-665 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_76239731 |
source | American Association for the Advancement of Science; MEDLINE; JSTOR |
subjects | Allosteric Regulation Biochemistry Biological and medical sciences Coordinate systems Fundamental and applied biological sciences. Psychology Geometric planes Hemoglobin Hemoglobin A Hemoglobins Humans Ligands Ligation Molecular biophysics Motion Oxygen Photolysis Protein Conformation Raman scattering Raman spectroscopy Spectroscopy : techniques and spectras Spectrum Analysis, Raman Structure-Activity Relationship Thermodynamics Torque |
title | Picosecond Time--Resolved Resonance Raman Studies of Hemoglobin: Implications for Reactivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Picosecond%20Time--Resolved%20Resonance%20Raman%20Studies%20of%20Hemoglobin:%20Implications%20for%20Reactivity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Findsen,%20E.%20W.&rft.date=1985-08-16&rft.volume=229&rft.issue=4714&rft.spage=661&rft.epage=665&rft.pages=661-665&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.4023704&rft_dat=%3Cgale_proqu%3EA3897161%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14191018&rft_id=info:pmid/4023704&rft_galeid=A3897161&rft_jstor_id=1695856&rfr_iscdi=true |