Neural nets identify sensory receptors from somal spikes

Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 1993-12, Vol.630 (1), p.345-348
Hauptverfasser: Rose, R.D., Karnavas, W.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 1
container_start_page 345
container_title Brain research
container_volume 630
creator Rose, R.D.
Karnavas, W.J.
description Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating muscle spindles, hairs or high-threshold mechanoreceptors. Further, both hair afferents and high-threshold mechanoreceptors could be separated into three distinct subclasses. The neural net sorting reported here utilizes only the electrophysiologicalproperties of the somata plus conduction velocity and can with this information alone predict the functional properties of the sensory endings. Interestingly, neural net sorting could also distinguish between different types of hair afferents (or nociceptors), even when conduction velocity information was ignored. It is suggested that neural nets, in combination with computer-controlled data-acquisition systems, could greatly increase investigator efficiency and decrease the number of animals needed to demonstrate specific phenomena, such as drug effects on particular cell types. A double-edged sword of increased investigator efficiency and decreased animal usage may be of particular usefulness in the present socio-political research arena.
doi_str_mv 10.1016/0006-8993(93)90676-E
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76239428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>000689939390676E</els_id><sourcerecordid>76239428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-77f455dc99cd25a4dbc97e5339a473fce0257e4d17ad337473f4aafc6380963</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo67r6DxR6ENFDNW3SpLkIsqwfsOhB7yEmU4j2Y820wv57U7bsURgIk3lmeHkIOc_obUYzcUcpFWmpFLtW7EZRIUW6OiDzrJR5KnJOD8l8jxyTE8Sv2DKm6IzMyixilM9J-QpDMHXSQo-Jd9D2vtomCC12YZsEsLDpu4BJFbomwa6JKG78N-ApOapMjXA2vQvy_rj6WD6n67enl-XDOrWsFH0qZcWLwlmlrMsLw92nVRKKGMNwySoLNC8kcJdJ4xiT4x83prKClVQJtiBXu6ub0P0MgL1uPFqoa9NCN6CWImeK52UE-Q60oUMMUOlN8I0JW51RPerSows9utBjjbr0Kq5dTPeHzwbcfmnyE-eX09ygNXUVTGs97rEYUhRFHrH7HQbRxK-HoNF6aC04HxX22nX-_xx_wIKGCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76239428</pqid></control><display><type>article</type><title>Neural nets identify sensory receptors from somal spikes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Rose, R.D. ; Karnavas, W.J.</creator><creatorcontrib>Rose, R.D. ; Karnavas, W.J.</creatorcontrib><description>Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating muscle spindles, hairs or high-threshold mechanoreceptors. Further, both hair afferents and high-threshold mechanoreceptors could be separated into three distinct subclasses. The neural net sorting reported here utilizes only the electrophysiologicalproperties of the somata plus conduction velocity and can with this information alone predict the functional properties of the sensory endings. Interestingly, neural net sorting could also distinguish between different types of hair afferents (or nociceptors), even when conduction velocity information was ignored. It is suggested that neural nets, in combination with computer-controlled data-acquisition systems, could greatly increase investigator efficiency and decrease the number of animals needed to demonstrate specific phenomena, such as drug effects on particular cell types. A double-edged sword of increased investigator efficiency and decreased animal usage may be of particular usefulness in the present socio-political research arena.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/0006-8993(93)90676-E</identifier><identifier>PMID: 8118704</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Action Potentials - physiology ; Animals ; Back propagation ; Biological and medical sciences ; Cat ; Cats ; Fundamental and applied biological sciences. Psychology ; Ganglia, Spinal - cytology ; Ganglia, Spinal - physiology ; Identified cell ; Neural net ; Neural Networks (Computer) ; Neurons - physiology ; Retrospective Studies ; Sensory neuron ; Sensory Receptor Cells - physiology ; Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors ; Spike analysis ; Spinal ganglion ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research, 1993-12, Vol.630 (1), p.345-348</ispartof><rights>1993 Elsevier Science Publishers B.V. All rights reserved</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-77f455dc99cd25a4dbc97e5339a473fce0257e4d17ad337473f4aafc6380963</citedby><cites>FETCH-LOGICAL-c386t-77f455dc99cd25a4dbc97e5339a473fce0257e4d17ad337473f4aafc6380963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0006-8993(93)90676-E$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3806552$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8118704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rose, R.D.</creatorcontrib><creatorcontrib>Karnavas, W.J.</creatorcontrib><title>Neural nets identify sensory receptors from somal spikes</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating muscle spindles, hairs or high-threshold mechanoreceptors. Further, both hair afferents and high-threshold mechanoreceptors could be separated into three distinct subclasses. The neural net sorting reported here utilizes only the electrophysiologicalproperties of the somata plus conduction velocity and can with this information alone predict the functional properties of the sensory endings. Interestingly, neural net sorting could also distinguish between different types of hair afferents (or nociceptors), even when conduction velocity information was ignored. It is suggested that neural nets, in combination with computer-controlled data-acquisition systems, could greatly increase investigator efficiency and decrease the number of animals needed to demonstrate specific phenomena, such as drug effects on particular cell types. A double-edged sword of increased investigator efficiency and decreased animal usage may be of particular usefulness in the present socio-political research arena.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Back propagation</subject><subject>Biological and medical sciences</subject><subject>Cat</subject><subject>Cats</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - physiology</subject><subject>Identified cell</subject><subject>Neural net</subject><subject>Neural Networks (Computer)</subject><subject>Neurons - physiology</subject><subject>Retrospective Studies</subject><subject>Sensory neuron</subject><subject>Sensory Receptor Cells - physiology</subject><subject>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</subject><subject>Spike analysis</subject><subject>Spinal ganglion</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo67r6DxR6ENFDNW3SpLkIsqwfsOhB7yEmU4j2Y820wv57U7bsURgIk3lmeHkIOc_obUYzcUcpFWmpFLtW7EZRIUW6OiDzrJR5KnJOD8l8jxyTE8Sv2DKm6IzMyixilM9J-QpDMHXSQo-Jd9D2vtomCC12YZsEsLDpu4BJFbomwa6JKG78N-ApOapMjXA2vQvy_rj6WD6n67enl-XDOrWsFH0qZcWLwlmlrMsLw92nVRKKGMNwySoLNC8kcJdJ4xiT4x83prKClVQJtiBXu6ub0P0MgL1uPFqoa9NCN6CWImeK52UE-Q60oUMMUOlN8I0JW51RPerSows9utBjjbr0Kq5dTPeHzwbcfmnyE-eX09ygNXUVTGs97rEYUhRFHrH7HQbRxK-HoNF6aC04HxX22nX-_xx_wIKGCA</recordid><startdate>19931210</startdate><enddate>19931210</enddate><creator>Rose, R.D.</creator><creator>Karnavas, W.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19931210</creationdate><title>Neural nets identify sensory receptors from somal spikes</title><author>Rose, R.D. ; Karnavas, W.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-77f455dc99cd25a4dbc97e5339a473fce0257e4d17ad337473f4aafc6380963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Back propagation</topic><topic>Biological and medical sciences</topic><topic>Cat</topic><topic>Cats</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - physiology</topic><topic>Identified cell</topic><topic>Neural net</topic><topic>Neural Networks (Computer)</topic><topic>Neurons - physiology</topic><topic>Retrospective Studies</topic><topic>Sensory neuron</topic><topic>Sensory Receptor Cells - physiology</topic><topic>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</topic><topic>Spike analysis</topic><topic>Spinal ganglion</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rose, R.D.</creatorcontrib><creatorcontrib>Karnavas, W.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rose, R.D.</au><au>Karnavas, W.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural nets identify sensory receptors from somal spikes</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>1993-12-10</date><risdate>1993</risdate><volume>630</volume><issue>1</issue><spage>345</spage><epage>348</epage><pages>345-348</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating muscle spindles, hairs or high-threshold mechanoreceptors. Further, both hair afferents and high-threshold mechanoreceptors could be separated into three distinct subclasses. The neural net sorting reported here utilizes only the electrophysiologicalproperties of the somata plus conduction velocity and can with this information alone predict the functional properties of the sensory endings. Interestingly, neural net sorting could also distinguish between different types of hair afferents (or nociceptors), even when conduction velocity information was ignored. It is suggested that neural nets, in combination with computer-controlled data-acquisition systems, could greatly increase investigator efficiency and decrease the number of animals needed to demonstrate specific phenomena, such as drug effects on particular cell types. A double-edged sword of increased investigator efficiency and decreased animal usage may be of particular usefulness in the present socio-political research arena.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>8118704</pmid><doi>10.1016/0006-8993(93)90676-E</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 1993-12, Vol.630 (1), p.345-348
issn 0006-8993
1872-6240
language eng
recordid cdi_proquest_miscellaneous_76239428
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Action Potentials - physiology
Animals
Back propagation
Biological and medical sciences
Cat
Cats
Fundamental and applied biological sciences. Psychology
Ganglia, Spinal - cytology
Ganglia, Spinal - physiology
Identified cell
Neural net
Neural Networks (Computer)
Neurons - physiology
Retrospective Studies
Sensory neuron
Sensory Receptor Cells - physiology
Somesthesis and somesthetic pathways (proprioception, exteroception, nociception)
interoception
electrolocation. Sensory receptors
Spike analysis
Spinal ganglion
Vertebrates: nervous system and sense organs
title Neural nets identify sensory receptors from somal spikes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20nets%20identify%20sensory%20receptors%20from%20somal%20spikes&rft.jtitle=Brain%20research&rft.au=Rose,%20R.D.&rft.date=1993-12-10&rft.volume=630&rft.issue=1&rft.spage=345&rft.epage=348&rft.pages=345-348&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/0006-8993(93)90676-E&rft_dat=%3Cproquest_cross%3E76239428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76239428&rft_id=info:pmid/8118704&rft_els_id=000689939390676E&rfr_iscdi=true