Neural nets identify sensory receptors from somal spikes
Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating...
Gespeichert in:
Veröffentlicht in: | Brain research 1993-12, Vol.630 (1), p.345-348 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 348 |
---|---|
container_issue | 1 |
container_start_page | 345 |
container_title | Brain research |
container_volume | 630 |
creator | Rose, R.D. Karnavas, W.J. |
description | Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating muscle spindles, hairs or high-threshold mechanoreceptors. Further, both hair afferents and high-threshold mechanoreceptors could be separated into three distinct subclasses. The neural net sorting reported here utilizes only the electrophysiologicalproperties of the somata plus conduction velocity and can with this information alone predict the functional properties of the sensory endings. Interestingly, neural net sorting could also distinguish between different types of hair afferents (or nociceptors), even when conduction velocity information was ignored. It is suggested that neural nets, in combination with computer-controlled data-acquisition systems, could greatly increase investigator efficiency and decrease the number of animals needed to demonstrate specific phenomena, such as drug effects on particular cell types. A double-edged sword of increased investigator efficiency and decreased animal usage may be of particular usefulness in the present socio-political research arena. |
doi_str_mv | 10.1016/0006-8993(93)90676-E |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76239428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>000689939390676E</els_id><sourcerecordid>76239428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-77f455dc99cd25a4dbc97e5339a473fce0257e4d17ad337473f4aafc6380963</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo67r6DxR6ENFDNW3SpLkIsqwfsOhB7yEmU4j2Y820wv57U7bsURgIk3lmeHkIOc_obUYzcUcpFWmpFLtW7EZRIUW6OiDzrJR5KnJOD8l8jxyTE8Sv2DKm6IzMyixilM9J-QpDMHXSQo-Jd9D2vtomCC12YZsEsLDpu4BJFbomwa6JKG78N-ApOapMjXA2vQvy_rj6WD6n67enl-XDOrWsFH0qZcWLwlmlrMsLw92nVRKKGMNwySoLNC8kcJdJ4xiT4x83prKClVQJtiBXu6ub0P0MgL1uPFqoa9NCN6CWImeK52UE-Q60oUMMUOlN8I0JW51RPerSows9utBjjbr0Kq5dTPeHzwbcfmnyE-eX09ygNXUVTGs97rEYUhRFHrH7HQbRxK-HoNF6aC04HxX22nX-_xx_wIKGCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76239428</pqid></control><display><type>article</type><title>Neural nets identify sensory receptors from somal spikes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Rose, R.D. ; Karnavas, W.J.</creator><creatorcontrib>Rose, R.D. ; Karnavas, W.J.</creatorcontrib><description>Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating muscle spindles, hairs or high-threshold mechanoreceptors. Further, both hair afferents and high-threshold mechanoreceptors could be separated into three distinct subclasses. The neural net sorting reported here utilizes only the electrophysiologicalproperties of the somata plus conduction velocity and can with this information alone predict the functional properties of the sensory endings. Interestingly, neural net sorting could also distinguish between different types of hair afferents (or nociceptors), even when conduction velocity information was ignored. It is suggested that neural nets, in combination with computer-controlled data-acquisition systems, could greatly increase investigator efficiency and decrease the number of animals needed to demonstrate specific phenomena, such as drug effects on particular cell types. A double-edged sword of increased investigator efficiency and decreased animal usage may be of particular usefulness in the present socio-political research arena.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/0006-8993(93)90676-E</identifier><identifier>PMID: 8118704</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Action Potentials - physiology ; Animals ; Back propagation ; Biological and medical sciences ; Cat ; Cats ; Fundamental and applied biological sciences. Psychology ; Ganglia, Spinal - cytology ; Ganglia, Spinal - physiology ; Identified cell ; Neural net ; Neural Networks (Computer) ; Neurons - physiology ; Retrospective Studies ; Sensory neuron ; Sensory Receptor Cells - physiology ; Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors ; Spike analysis ; Spinal ganglion ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research, 1993-12, Vol.630 (1), p.345-348</ispartof><rights>1993 Elsevier Science Publishers B.V. All rights reserved</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-77f455dc99cd25a4dbc97e5339a473fce0257e4d17ad337473f4aafc6380963</citedby><cites>FETCH-LOGICAL-c386t-77f455dc99cd25a4dbc97e5339a473fce0257e4d17ad337473f4aafc6380963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0006-8993(93)90676-E$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3806552$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8118704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rose, R.D.</creatorcontrib><creatorcontrib>Karnavas, W.J.</creatorcontrib><title>Neural nets identify sensory receptors from somal spikes</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating muscle spindles, hairs or high-threshold mechanoreceptors. Further, both hair afferents and high-threshold mechanoreceptors could be separated into three distinct subclasses. The neural net sorting reported here utilizes only the electrophysiologicalproperties of the somata plus conduction velocity and can with this information alone predict the functional properties of the sensory endings. Interestingly, neural net sorting could also distinguish between different types of hair afferents (or nociceptors), even when conduction velocity information was ignored. It is suggested that neural nets, in combination with computer-controlled data-acquisition systems, could greatly increase investigator efficiency and decrease the number of animals needed to demonstrate specific phenomena, such as drug effects on particular cell types. A double-edged sword of increased investigator efficiency and decreased animal usage may be of particular usefulness in the present socio-political research arena.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Back propagation</subject><subject>Biological and medical sciences</subject><subject>Cat</subject><subject>Cats</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - physiology</subject><subject>Identified cell</subject><subject>Neural net</subject><subject>Neural Networks (Computer)</subject><subject>Neurons - physiology</subject><subject>Retrospective Studies</subject><subject>Sensory neuron</subject><subject>Sensory Receptor Cells - physiology</subject><subject>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</subject><subject>Spike analysis</subject><subject>Spinal ganglion</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo67r6DxR6ENFDNW3SpLkIsqwfsOhB7yEmU4j2Y820wv57U7bsURgIk3lmeHkIOc_obUYzcUcpFWmpFLtW7EZRIUW6OiDzrJR5KnJOD8l8jxyTE8Sv2DKm6IzMyixilM9J-QpDMHXSQo-Jd9D2vtomCC12YZsEsLDpu4BJFbomwa6JKG78N-ApOapMjXA2vQvy_rj6WD6n67enl-XDOrWsFH0qZcWLwlmlrMsLw92nVRKKGMNwySoLNC8kcJdJ4xiT4x83prKClVQJtiBXu6ub0P0MgL1uPFqoa9NCN6CWImeK52UE-Q60oUMMUOlN8I0JW51RPerSows9utBjjbr0Kq5dTPeHzwbcfmnyE-eX09ygNXUVTGs97rEYUhRFHrH7HQbRxK-HoNF6aC04HxX22nX-_xx_wIKGCA</recordid><startdate>19931210</startdate><enddate>19931210</enddate><creator>Rose, R.D.</creator><creator>Karnavas, W.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19931210</creationdate><title>Neural nets identify sensory receptors from somal spikes</title><author>Rose, R.D. ; Karnavas, W.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-77f455dc99cd25a4dbc97e5339a473fce0257e4d17ad337473f4aafc6380963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Back propagation</topic><topic>Biological and medical sciences</topic><topic>Cat</topic><topic>Cats</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - physiology</topic><topic>Identified cell</topic><topic>Neural net</topic><topic>Neural Networks (Computer)</topic><topic>Neurons - physiology</topic><topic>Retrospective Studies</topic><topic>Sensory neuron</topic><topic>Sensory Receptor Cells - physiology</topic><topic>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</topic><topic>Spike analysis</topic><topic>Spinal ganglion</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rose, R.D.</creatorcontrib><creatorcontrib>Karnavas, W.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rose, R.D.</au><au>Karnavas, W.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural nets identify sensory receptors from somal spikes</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>1993-12-10</date><risdate>1993</risdate><volume>630</volume><issue>1</issue><spage>345</spage><epage>348</epage><pages>345-348</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Retrospective analysis of somal electrophysiology from intracellularly recorded, physiologically identified afferents demonstrates that neural nets can be readily trained to identify the type of peripheral receptor supplied. Specifically, cat spinal ganglion somata could be identified as innervating muscle spindles, hairs or high-threshold mechanoreceptors. Further, both hair afferents and high-threshold mechanoreceptors could be separated into three distinct subclasses. The neural net sorting reported here utilizes only the electrophysiologicalproperties of the somata plus conduction velocity and can with this information alone predict the functional properties of the sensory endings. Interestingly, neural net sorting could also distinguish between different types of hair afferents (or nociceptors), even when conduction velocity information was ignored. It is suggested that neural nets, in combination with computer-controlled data-acquisition systems, could greatly increase investigator efficiency and decrease the number of animals needed to demonstrate specific phenomena, such as drug effects on particular cell types. A double-edged sword of increased investigator efficiency and decreased animal usage may be of particular usefulness in the present socio-political research arena.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>8118704</pmid><doi>10.1016/0006-8993(93)90676-E</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8993 |
ispartof | Brain research, 1993-12, Vol.630 (1), p.345-348 |
issn | 0006-8993 1872-6240 |
language | eng |
recordid | cdi_proquest_miscellaneous_76239428 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Action Potentials - physiology Animals Back propagation Biological and medical sciences Cat Cats Fundamental and applied biological sciences. Psychology Ganglia, Spinal - cytology Ganglia, Spinal - physiology Identified cell Neural net Neural Networks (Computer) Neurons - physiology Retrospective Studies Sensory neuron Sensory Receptor Cells - physiology Somesthesis and somesthetic pathways (proprioception, exteroception, nociception) interoception electrolocation. Sensory receptors Spike analysis Spinal ganglion Vertebrates: nervous system and sense organs |
title | Neural nets identify sensory receptors from somal spikes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20nets%20identify%20sensory%20receptors%20from%20somal%20spikes&rft.jtitle=Brain%20research&rft.au=Rose,%20R.D.&rft.date=1993-12-10&rft.volume=630&rft.issue=1&rft.spage=345&rft.epage=348&rft.pages=345-348&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/0006-8993(93)90676-E&rft_dat=%3Cproquest_cross%3E76239428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76239428&rft_id=info:pmid/8118704&rft_els_id=000689939390676E&rfr_iscdi=true |