Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2009-07, Vol.73 (13), p.3807-3818
Hauptverfasser: Chan, Clara S., Fakra, Sirine C., Edwards, David C., Emerson, David, Banfield, Jillian F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3818
container_issue 13
container_start_page 3807
container_title Geochimica et cosmochimica acta
container_volume 73
creator Chan, Clara S.
Fakra, Sirine C.
Edwards, David C.
Emerson, David
Banfield, Jillian F.
description Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence (μXRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.
doi_str_mv 10.1016/j.gca.2009.02.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762280050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703709001884</els_id><sourcerecordid>762280050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-4172f62349f98101b3d8aad114b9dd208ef9be0bd6742869150c2076ddc7cd8a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iyMSWc7SSOxYQQHxWVWGC2HPtCXaVxsVPU8OtxVWYmS-fnOb33EnJNoaBA69t18Wl0wQBkAawAXp-QGW0Ey2XF-SmZQYJyAVyck4sY1wAgqgpm5HUR_JD5_bSabPB7ZzHbuAGD7t2PHt3hb0gTE3zrdJ_hfgzaYN_veh2yre-nqI1Z6ZDEeEnOOt1HvPp75-Tj6fH94SVfvj0vHu6XueayGvOSCtbVjJeyk00K33LbaG0pLVtpLYMGO9kitLYWJWtqSSswDERtrREmoXxObo57t8F_7TCOauPiIZQe0O-iEjVjDUAFiaRHMuWPMWCntsFtdJgUBXXoTa1V6k0delPAVOotOXdHB9MJ3w6DisbhYNC6gGZU1rt_7F8N5nb2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762280050</pqid></control><display><type>article</type><title>Iron oxyhydroxide mineralization on microbial extracellular polysaccharides</title><source>Elsevier ScienceDirect Journals</source><creator>Chan, Clara S. ; Fakra, Sirine C. ; Edwards, David C. ; Emerson, David ; Banfield, Jillian F.</creator><creatorcontrib>Chan, Clara S. ; Fakra, Sirine C. ; Edwards, David C. ; Emerson, David ; Banfield, Jillian F.</creatorcontrib><description>Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence (μXRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2009.02.036</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bacteria ; Carboxyl group ; Iron ; Microorganisms ; Mineralization ; Minerals ; Polymers ; Polysaccharides ; Scanning electron microscopy</subject><ispartof>Geochimica et cosmochimica acta, 2009-07, Vol.73 (13), p.3807-3818</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-4172f62349f98101b3d8aad114b9dd208ef9be0bd6742869150c2076ddc7cd8a3</citedby><cites>FETCH-LOGICAL-a395t-4172f62349f98101b3d8aad114b9dd208ef9be0bd6742869150c2076ddc7cd8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016703709001884$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chan, Clara S.</creatorcontrib><creatorcontrib>Fakra, Sirine C.</creatorcontrib><creatorcontrib>Edwards, David C.</creatorcontrib><creatorcontrib>Emerson, David</creatorcontrib><creatorcontrib>Banfield, Jillian F.</creatorcontrib><title>Iron oxyhydroxide mineralization on microbial extracellular polysaccharides</title><title>Geochimica et cosmochimica acta</title><description>Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence (μXRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.</description><subject>Bacteria</subject><subject>Carboxyl group</subject><subject>Iron</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Minerals</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Scanning electron microscopy</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iyMSWc7SSOxYQQHxWVWGC2HPtCXaVxsVPU8OtxVWYmS-fnOb33EnJNoaBA69t18Wl0wQBkAawAXp-QGW0Ey2XF-SmZQYJyAVyck4sY1wAgqgpm5HUR_JD5_bSabPB7ZzHbuAGD7t2PHt3hb0gTE3zrdJ_hfgzaYN_veh2yre-nqI1Z6ZDEeEnOOt1HvPp75-Tj6fH94SVfvj0vHu6XueayGvOSCtbVjJeyk00K33LbaG0pLVtpLYMGO9kitLYWJWtqSSswDERtrREmoXxObo57t8F_7TCOauPiIZQe0O-iEjVjDUAFiaRHMuWPMWCntsFtdJgUBXXoTa1V6k0delPAVOotOXdHB9MJ3w6DisbhYNC6gGZU1rt_7F8N5nb2</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Chan, Clara S.</creator><creator>Fakra, Sirine C.</creator><creator>Edwards, David C.</creator><creator>Emerson, David</creator><creator>Banfield, Jillian F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20090701</creationdate><title>Iron oxyhydroxide mineralization on microbial extracellular polysaccharides</title><author>Chan, Clara S. ; Fakra, Sirine C. ; Edwards, David C. ; Emerson, David ; Banfield, Jillian F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-4172f62349f98101b3d8aad114b9dd208ef9be0bd6742869150c2076ddc7cd8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteria</topic><topic>Carboxyl group</topic><topic>Iron</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Minerals</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Clara S.</creatorcontrib><creatorcontrib>Fakra, Sirine C.</creatorcontrib><creatorcontrib>Edwards, David C.</creatorcontrib><creatorcontrib>Emerson, David</creatorcontrib><creatorcontrib>Banfield, Jillian F.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Clara S.</au><au>Fakra, Sirine C.</au><au>Edwards, David C.</au><au>Emerson, David</au><au>Banfield, Jillian F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron oxyhydroxide mineralization on microbial extracellular polysaccharides</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>73</volume><issue>13</issue><spage>3807</spage><epage>3818</epage><pages>3807-3818</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence (μXRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2009.02.036</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2009-07, Vol.73 (13), p.3807-3818
issn 0016-7037
1872-9533
language eng
recordid cdi_proquest_miscellaneous_762280050
source Elsevier ScienceDirect Journals
subjects Bacteria
Carboxyl group
Iron
Microorganisms
Mineralization
Minerals
Polymers
Polysaccharides
Scanning electron microscopy
title Iron oxyhydroxide mineralization on microbial extracellular polysaccharides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20oxyhydroxide%20mineralization%20on%20microbial%20extracellular%20polysaccharides&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Chan,%20Clara%20S.&rft.date=2009-07-01&rft.volume=73&rft.issue=13&rft.spage=3807&rft.epage=3818&rft.pages=3807-3818&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2009.02.036&rft_dat=%3Cproquest_cross%3E762280050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762280050&rft_id=info:pmid/&rft_els_id=S0016703709001884&rfr_iscdi=true