Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway

The cellular DNA-damage response is a signaling network that is vigorously activated by cytotoxic DNA lesions, such as double-strand breaks (DSBs) 1 . The DSB response is mobilized by the nuclear protein kinase ATM, which modulates this process by phosphorylating key players in these pathways 2 . A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2006-08, Vol.8 (8), p.870-876
Hauptverfasser: Ziv, Yael, Bielopolski, Dana, Galanty, Yaron, Lukas, Claudia, Taya, Yoichi, Schultz, David C., Lukas, Jiri, Bekker-Jensen, Simon, Bartek, Jiri, Shiloh, Yosef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 876
container_issue 8
container_start_page 870
container_title Nature cell biology
container_volume 8
creator Ziv, Yael
Bielopolski, Dana
Galanty, Yaron
Lukas, Claudia
Taya, Yoichi
Schultz, David C.
Lukas, Jiri
Bekker-Jensen, Simon
Bartek, Jiri
Shiloh, Yosef
description The cellular DNA-damage response is a signaling network that is vigorously activated by cytotoxic DNA lesions, such as double-strand breaks (DSBs) 1 . The DSB response is mobilized by the nuclear protein kinase ATM, which modulates this process by phosphorylating key players in these pathways 2 . A long-standing question in this field is whether DSB formation affects chromatin condensation. Here, we show that DSB formation is followed by ATM-dependent chromatin relaxation. ATM's effector in this pathway is the protein KRAB-associated protein (KAP-1, also known as TIF1β, KRIP-1 or TRIM28), previously known as a corepressor of gene transcription 3 , 4 . In response to DSB induction, KAP-1 is phosphorylated in an ATM-dependent manner on Ser 824. KAP-1 is phosphorylated exclusively at the damage sites, from which phosphorylated KAP-1 spreads rapidly throughout the chromatin. Ablation of the phosphorylation site of KAP-1 leads to loss of DSB-induced chromatin decondensation and renders the cells hypersensitive to DSB-inducing agents. Knocking down KAP-1 , or mimicking a constitutive phosphorylation of this protein, leads to constitutive chromatin relaxation. These results suggest that chromatin relaxation is a fundamental pathway in the DNA-damage response and identify its primary mediators.
doi_str_mv 10.1038/ncb1446
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_762278986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183058827</galeid><sourcerecordid>A183058827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-6d2d21dd5d83b42312690e6babb8f60c1b4ceaf22552be4b20ce4b7e72a2b9bc3</originalsourceid><addsrcrecordid>eNqF0m1r1TAUAOAiiptT_AcSFHz50JmkbZJ-LHe-DOcLOj-HpDm962yTmqRz99-b6y2MO0QptEn6nEPO4WTZY4KPCS7Ea9tqUpbsTnZISs7ykvH67nbNqpwXNT3IHoRwiXEymN_PDggTjJKyOMzm1YV3o4q9RR4GdZ1WzqI_uzA5GwBFh04-Nci4WQ-Qh-iVNUh7UD8C6gManZkHFSGdbZBC1l3BgJrzjznaug_Nl5wgAxNYAzaiScWLX2rzMLvXqSHAo-V7lH1_--Z89T4_-_zudNWc5W3F6pgzQw0lxlRGFLqkBaGsxsC00lp0DLdEly2ojtKqohpKTXGb3hw4VVTXui2Oshe7vJN3P2cIUY59aGEYlAU3B8kZpVzUgiX5_J8yNayuU6f_C0ldkCrdNMGnt-Clm71N5UpKacEFq8qEnu3QWg0ge9u51N92m1E2RBS4EoLypI7_otJjYOxbZ6Hr0_lewKu9gGQiXMe1mkOQp9--7tulR613IXjo5OT7UfmNJFhuh0suw5Xkk6WiWY9gbtwyTQm83IGQftk1-JuSb-f6Dcr1074</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222378654</pqid></control><display><type>article</type><title>Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ziv, Yael ; Bielopolski, Dana ; Galanty, Yaron ; Lukas, Claudia ; Taya, Yoichi ; Schultz, David C. ; Lukas, Jiri ; Bekker-Jensen, Simon ; Bartek, Jiri ; Shiloh, Yosef</creator><creatorcontrib>Ziv, Yael ; Bielopolski, Dana ; Galanty, Yaron ; Lukas, Claudia ; Taya, Yoichi ; Schultz, David C. ; Lukas, Jiri ; Bekker-Jensen, Simon ; Bartek, Jiri ; Shiloh, Yosef</creatorcontrib><description>The cellular DNA-damage response is a signaling network that is vigorously activated by cytotoxic DNA lesions, such as double-strand breaks (DSBs) 1 . The DSB response is mobilized by the nuclear protein kinase ATM, which modulates this process by phosphorylating key players in these pathways 2 . A long-standing question in this field is whether DSB formation affects chromatin condensation. Here, we show that DSB formation is followed by ATM-dependent chromatin relaxation. ATM's effector in this pathway is the protein KRAB-associated protein (KAP-1, also known as TIF1β, KRIP-1 or TRIM28), previously known as a corepressor of gene transcription 3 , 4 . In response to DSB induction, KAP-1 is phosphorylated in an ATM-dependent manner on Ser 824. KAP-1 is phosphorylated exclusively at the damage sites, from which phosphorylated KAP-1 spreads rapidly throughout the chromatin. Ablation of the phosphorylation site of KAP-1 leads to loss of DSB-induced chromatin decondensation and renders the cells hypersensitive to DSB-inducing agents. Knocking down KAP-1 , or mimicking a constitutive phosphorylation of this protein, leads to constitutive chromatin relaxation. These results suggest that chromatin relaxation is a fundamental pathway in the DNA-damage response and identify its primary mediators.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1446</identifier><identifier>PMID: 16862143</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Antibodies ; Ataxia Telangiectasia Mutated Proteins ; Biomedical and Life Sciences ; Blotting, Western ; Cancer ; Cancer Research ; Cell Biology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Cycle Proteins - physiology ; Cell Line ; Cell Line, Tumor ; Cell Survival - drug effects ; Cell Survival - genetics ; Chromatin ; Chromatin - metabolism ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; DNA Damage ; DNA polymerases ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - physiology ; Dose-Response Relationship, Drug ; Genetic aspects ; Humans ; Kinases ; Lesions ; letter ; Life Sciences ; Microscopy, Fluorescence ; Mutation - genetics ; Nucleic Acid Synthesis Inhibitors - pharmacology ; Phosphorylation ; Physiological aspects ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Protein-Serine-Threonine Kinases - physiology ; Proteins ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Repressor Proteins - physiology ; Signal Transduction - physiology ; Stem Cells ; Tripartite Motif-Containing Protein 28 ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism ; Tumor Suppressor Proteins - physiology ; Yeast ; Zinostatin - pharmacology</subject><ispartof>Nature cell biology, 2006-08, Vol.8 (8), p.870-876</ispartof><rights>Springer Nature Limited 2006</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-6d2d21dd5d83b42312690e6babb8f60c1b4ceaf22552be4b20ce4b7e72a2b9bc3</citedby><cites>FETCH-LOGICAL-c569t-6d2d21dd5d83b42312690e6babb8f60c1b4ceaf22552be4b20ce4b7e72a2b9bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1446$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1446$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16862143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziv, Yael</creatorcontrib><creatorcontrib>Bielopolski, Dana</creatorcontrib><creatorcontrib>Galanty, Yaron</creatorcontrib><creatorcontrib>Lukas, Claudia</creatorcontrib><creatorcontrib>Taya, Yoichi</creatorcontrib><creatorcontrib>Schultz, David C.</creatorcontrib><creatorcontrib>Lukas, Jiri</creatorcontrib><creatorcontrib>Bekker-Jensen, Simon</creatorcontrib><creatorcontrib>Bartek, Jiri</creatorcontrib><creatorcontrib>Shiloh, Yosef</creatorcontrib><title>Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>The cellular DNA-damage response is a signaling network that is vigorously activated by cytotoxic DNA lesions, such as double-strand breaks (DSBs) 1 . The DSB response is mobilized by the nuclear protein kinase ATM, which modulates this process by phosphorylating key players in these pathways 2 . A long-standing question in this field is whether DSB formation affects chromatin condensation. Here, we show that DSB formation is followed by ATM-dependent chromatin relaxation. ATM's effector in this pathway is the protein KRAB-associated protein (KAP-1, also known as TIF1β, KRIP-1 or TRIM28), previously known as a corepressor of gene transcription 3 , 4 . In response to DSB induction, KAP-1 is phosphorylated in an ATM-dependent manner on Ser 824. KAP-1 is phosphorylated exclusively at the damage sites, from which phosphorylated KAP-1 spreads rapidly throughout the chromatin. Ablation of the phosphorylation site of KAP-1 leads to loss of DSB-induced chromatin decondensation and renders the cells hypersensitive to DSB-inducing agents. Knocking down KAP-1 , or mimicking a constitutive phosphorylation of this protein, leads to constitutive chromatin relaxation. These results suggest that chromatin relaxation is a fundamental pathway in the DNA-damage response and identify its primary mediators.</description><subject>Antibodies</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>Biomedical and Life Sciences</subject><subject>Blotting, Western</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Cycle Proteins - physiology</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - genetics</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA polymerases</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Kinases</subject><subject>Lesions</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Microscopy, Fluorescence</subject><subject>Mutation - genetics</subject><subject>Nucleic Acid Synthesis Inhibitors - pharmacology</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases - physiology</subject><subject>Proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Repressor Proteins - physiology</subject><subject>Signal Transduction - physiology</subject><subject>Stem Cells</subject><subject>Tripartite Motif-Containing Protein 28</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Tumor Suppressor Proteins - physiology</subject><subject>Yeast</subject><subject>Zinostatin - pharmacology</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0m1r1TAUAOAiiptT_AcSFHz50JmkbZJ-LHe-DOcLOj-HpDm962yTmqRz99-b6y2MO0QptEn6nEPO4WTZY4KPCS7Ea9tqUpbsTnZISs7ykvH67nbNqpwXNT3IHoRwiXEymN_PDggTjJKyOMzm1YV3o4q9RR4GdZ1WzqI_uzA5GwBFh04-Nci4WQ-Qh-iVNUh7UD8C6gManZkHFSGdbZBC1l3BgJrzjznaug_Nl5wgAxNYAzaiScWLX2rzMLvXqSHAo-V7lH1_--Z89T4_-_zudNWc5W3F6pgzQw0lxlRGFLqkBaGsxsC00lp0DLdEly2ojtKqohpKTXGb3hw4VVTXui2Oshe7vJN3P2cIUY59aGEYlAU3B8kZpVzUgiX5_J8yNayuU6f_C0ldkCrdNMGnt-Clm71N5UpKacEFq8qEnu3QWg0ge9u51N92m1E2RBS4EoLypI7_otJjYOxbZ6Hr0_lewKu9gGQiXMe1mkOQp9--7tulR613IXjo5OT7UfmNJFhuh0suw5Xkk6WiWY9gbtwyTQm83IGQftk1-JuSb-f6Dcr1074</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Ziv, Yael</creator><creator>Bielopolski, Dana</creator><creator>Galanty, Yaron</creator><creator>Lukas, Claudia</creator><creator>Taya, Yoichi</creator><creator>Schultz, David C.</creator><creator>Lukas, Jiri</creator><creator>Bekker-Jensen, Simon</creator><creator>Bartek, Jiri</creator><creator>Shiloh, Yosef</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway</title><author>Ziv, Yael ; Bielopolski, Dana ; Galanty, Yaron ; Lukas, Claudia ; Taya, Yoichi ; Schultz, David C. ; Lukas, Jiri ; Bekker-Jensen, Simon ; Bartek, Jiri ; Shiloh, Yosef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-6d2d21dd5d83b42312690e6babb8f60c1b4ceaf22552be4b20ce4b7e72a2b9bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Antibodies</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>Biomedical and Life Sciences</topic><topic>Blotting, Western</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Cycle Proteins - physiology</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - genetics</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA polymerases</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Kinases</topic><topic>Lesions</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Microscopy, Fluorescence</topic><topic>Mutation - genetics</topic><topic>Nucleic Acid Synthesis Inhibitors - pharmacology</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases - physiology</topic><topic>Proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Repressor Proteins - physiology</topic><topic>Signal Transduction - physiology</topic><topic>Stem Cells</topic><topic>Tripartite Motif-Containing Protein 28</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Tumor Suppressor Proteins - physiology</topic><topic>Yeast</topic><topic>Zinostatin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziv, Yael</creatorcontrib><creatorcontrib>Bielopolski, Dana</creatorcontrib><creatorcontrib>Galanty, Yaron</creatorcontrib><creatorcontrib>Lukas, Claudia</creatorcontrib><creatorcontrib>Taya, Yoichi</creatorcontrib><creatorcontrib>Schultz, David C.</creatorcontrib><creatorcontrib>Lukas, Jiri</creatorcontrib><creatorcontrib>Bekker-Jensen, Simon</creatorcontrib><creatorcontrib>Bartek, Jiri</creatorcontrib><creatorcontrib>Shiloh, Yosef</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziv, Yael</au><au>Bielopolski, Dana</au><au>Galanty, Yaron</au><au>Lukas, Claudia</au><au>Taya, Yoichi</au><au>Schultz, David C.</au><au>Lukas, Jiri</au><au>Bekker-Jensen, Simon</au><au>Bartek, Jiri</au><au>Shiloh, Yosef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>8</volume><issue>8</issue><spage>870</spage><epage>876</epage><pages>870-876</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>The cellular DNA-damage response is a signaling network that is vigorously activated by cytotoxic DNA lesions, such as double-strand breaks (DSBs) 1 . The DSB response is mobilized by the nuclear protein kinase ATM, which modulates this process by phosphorylating key players in these pathways 2 . A long-standing question in this field is whether DSB formation affects chromatin condensation. Here, we show that DSB formation is followed by ATM-dependent chromatin relaxation. ATM's effector in this pathway is the protein KRAB-associated protein (KAP-1, also known as TIF1β, KRIP-1 or TRIM28), previously known as a corepressor of gene transcription 3 , 4 . In response to DSB induction, KAP-1 is phosphorylated in an ATM-dependent manner on Ser 824. KAP-1 is phosphorylated exclusively at the damage sites, from which phosphorylated KAP-1 spreads rapidly throughout the chromatin. Ablation of the phosphorylation site of KAP-1 leads to loss of DSB-induced chromatin decondensation and renders the cells hypersensitive to DSB-inducing agents. Knocking down KAP-1 , or mimicking a constitutive phosphorylation of this protein, leads to constitutive chromatin relaxation. These results suggest that chromatin relaxation is a fundamental pathway in the DNA-damage response and identify its primary mediators.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16862143</pmid><doi>10.1038/ncb1446</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2006-08, Vol.8 (8), p.870-876
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_762278986
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Antibodies
Ataxia Telangiectasia Mutated Proteins
Biomedical and Life Sciences
Blotting, Western
Cancer
Cancer Research
Cell Biology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Cycle Proteins - physiology
Cell Line
Cell Line, Tumor
Cell Survival - drug effects
Cell Survival - genetics
Chromatin
Chromatin - metabolism
Deoxyribonucleic acid
Developmental Biology
DNA
DNA Damage
DNA polymerases
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - physiology
Dose-Response Relationship, Drug
Genetic aspects
Humans
Kinases
Lesions
letter
Life Sciences
Microscopy, Fluorescence
Mutation - genetics
Nucleic Acid Synthesis Inhibitors - pharmacology
Phosphorylation
Physiological aspects
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Protein-Serine-Threonine Kinases - physiology
Proteins
Repressor Proteins - genetics
Repressor Proteins - metabolism
Repressor Proteins - physiology
Signal Transduction - physiology
Stem Cells
Tripartite Motif-Containing Protein 28
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Tumor Suppressor Proteins - physiology
Yeast
Zinostatin - pharmacology
title Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatin%20relaxation%20in%20response%20to%20DNA%20double-strand%20breaks%20is%20modulated%20by%20a%20novel%20ATM-%20and%20KAP-1%20dependent%20pathway&rft.jtitle=Nature%20cell%20biology&rft.au=Ziv,%20Yael&rft.date=2006-08-01&rft.volume=8&rft.issue=8&rft.spage=870&rft.epage=876&rft.pages=870-876&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1446&rft_dat=%3Cgale_proqu%3EA183058827%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222378654&rft_id=info:pmid/16862143&rft_galeid=A183058827&rfr_iscdi=true