Linear chromosome maintenance in the absence of essential telomere-capping proteins
Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is conside...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2006-07, Vol.8 (7), p.734-740 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 740 |
---|---|
container_issue | 7 |
container_start_page | 734 |
container_title | Nature cell biology |
container_volume | 8 |
creator | Zubko, Mikhajlo K Lydall, David |
description | Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve. |
doi_str_mv | 10.1038/ncb1428 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_762278890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183058847</galeid><sourcerecordid>A183058847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-9bd8b61e8bf6a2c8c863a96966518a7cc3649cc9f88140d8bc6091a221d87bf13</originalsourceid><addsrcrecordid>eNqF0l1r1TAYB_AgiptT_ARKceDmRWeSpnm5HEPn4IDg9DqkOU_PMtrkmKSg334ppzqOymwumja__JunPAi9JPiM4Ea-97YjjMpH6JAwwWvGhXo8z3lbi0bRA_QspVuMCWNYPEUHhAsusGSH6HrlPJhY2ZsYxpDCCNVonM_gjbdQOV_lG6hMl2B-DH0FqUyzM0OVYSg8Qm3Nduv8ptrGkMH59Bw96c2Q4MVyP0LfPn74evGpXn2-vLo4X9W2pW2uVbeWHScgu54baqWVvDGKK85bIo2wtuFMWat6KQnDxVqOFTGUkrUUXU-aI3Syyy0f_j5Bynp0ycIwGA9hSlpwSoWUChf59kHJZYmm-P-QCMqoUk2Bb_6At2GKvpSrabmk4Hw-4PEObcwA2vk-5GjsnKjPiWxwKyUTRZ39Q5WxhtHZ4KF35f3ehnd7G4rJ8CNvzJSSvrr-sm-Xf2RjSClCr7fRjSb-1ATruXX00jpFvl4qmroR1vdu6ZUCTncglSW_gXhf8t9Zr3bUmzxF-J31a_0O7W_S0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222287661</pqid></control><display><type>article</type><title>Linear chromosome maintenance in the absence of essential telomere-capping proteins</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zubko, Mikhajlo K ; Lydall, David</creator><creatorcontrib>Zubko, Mikhajlo K ; Lydall, David</creatorcontrib><description>Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.</description><identifier>ISSN: 1465-7392</identifier><identifier>ISSN: 1476-4679</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1428</identifier><identifier>PMID: 16767084</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell division ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Chromosome banding ; Chromosomes ; Chromosomes - genetics ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; DNA damage ; DNA Damage - physiology ; DNA Repair - physiology ; Evolution, Molecular ; letter ; Life Sciences ; Mutation ; Mutation - genetics ; Oxytricha nova ; Physiological aspects ; Proteins ; Recombination, Genetic - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Schizosaccharomyces pombe ; Stem Cells ; Telomerase ; Telomere - genetics ; Telomere - metabolism ; Telomere-Binding Proteins - genetics ; Telomere-Binding Proteins - metabolism ; Telomeres ; Yeast ; Yeast fungi ; Yeasts</subject><ispartof>Nature cell biology, 2006-07, Vol.8 (7), p.734-740</ispartof><rights>Springer Nature Limited 2006</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-9bd8b61e8bf6a2c8c863a96966518a7cc3649cc9f88140d8bc6091a221d87bf13</citedby><cites>FETCH-LOGICAL-c525t-9bd8b61e8bf6a2c8c863a96966518a7cc3649cc9f88140d8bc6091a221d87bf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1428$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1428$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2725,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16767084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zubko, Mikhajlo K</creatorcontrib><creatorcontrib>Lydall, David</creatorcontrib><title>Linear chromosome maintenance in the absence of essential telomere-capping proteins</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.</description><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell division</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromosome banding</subject><subject>Chromosomes</subject><subject>Chromosomes - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - physiology</subject><subject>DNA Repair - physiology</subject><subject>Evolution, Molecular</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Oxytricha nova</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Recombination, Genetic - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Stem Cells</subject><subject>Telomerase</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere-Binding Proteins - genetics</subject><subject>Telomere-Binding Proteins - metabolism</subject><subject>Telomeres</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><issn>1465-7392</issn><issn>1476-4679</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0l1r1TAYB_AgiptT_ARKceDmRWeSpnm5HEPn4IDg9DqkOU_PMtrkmKSg334ppzqOymwumja__JunPAi9JPiM4Ea-97YjjMpH6JAwwWvGhXo8z3lbi0bRA_QspVuMCWNYPEUHhAsusGSH6HrlPJhY2ZsYxpDCCNVonM_gjbdQOV_lG6hMl2B-DH0FqUyzM0OVYSg8Qm3Nduv8ptrGkMH59Bw96c2Q4MVyP0LfPn74evGpXn2-vLo4X9W2pW2uVbeWHScgu54baqWVvDGKK85bIo2wtuFMWat6KQnDxVqOFTGUkrUUXU-aI3Syyy0f_j5Bynp0ycIwGA9hSlpwSoWUChf59kHJZYmm-P-QCMqoUk2Bb_6At2GKvpSrabmk4Hw-4PEObcwA2vk-5GjsnKjPiWxwKyUTRZ39Q5WxhtHZ4KF35f3ehnd7G4rJ8CNvzJSSvrr-sm-Xf2RjSClCr7fRjSb-1ATruXX00jpFvl4qmroR1vdu6ZUCTncglSW_gXhf8t9Zr3bUmzxF-J31a_0O7W_S0Q</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Zubko, Mikhajlo K</creator><creator>Lydall, David</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Linear chromosome maintenance in the absence of essential telomere-capping proteins</title><author>Zubko, Mikhajlo K ; Lydall, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-9bd8b61e8bf6a2c8c863a96966518a7cc3649cc9f88140d8bc6091a221d87bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell division</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromosome banding</topic><topic>Chromosomes</topic><topic>Chromosomes - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - physiology</topic><topic>DNA Repair - physiology</topic><topic>Evolution, Molecular</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Oxytricha nova</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Recombination, Genetic - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Stem Cells</topic><topic>Telomerase</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere-Binding Proteins - genetics</topic><topic>Telomere-Binding Proteins - metabolism</topic><topic>Telomeres</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zubko, Mikhajlo K</creatorcontrib><creatorcontrib>Lydall, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zubko, Mikhajlo K</au><au>Lydall, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear chromosome maintenance in the absence of essential telomere-capping proteins</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>8</volume><issue>7</issue><spage>734</spage><epage>740</epage><pages>734-740</pages><issn>1465-7392</issn><issn>1476-4679</issn><eissn>1476-4679</eissn><abstract>Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16767084</pmid><doi>10.1038/ncb1428</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2006-07, Vol.8 (7), p.734-740 |
issn | 1465-7392 1476-4679 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_762278890 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Cancer Research Cell Biology Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell division Cell Nucleus - genetics Cell Nucleus - metabolism Chromosome banding Chromosomes Chromosomes - genetics Deoxyribonucleic acid Developmental Biology DNA DNA damage DNA Damage - physiology DNA Repair - physiology Evolution, Molecular letter Life Sciences Mutation Mutation - genetics Oxytricha nova Physiological aspects Proteins Recombination, Genetic - genetics Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Schizosaccharomyces pombe Stem Cells Telomerase Telomere - genetics Telomere - metabolism Telomere-Binding Proteins - genetics Telomere-Binding Proteins - metabolism Telomeres Yeast Yeast fungi Yeasts |
title | Linear chromosome maintenance in the absence of essential telomere-capping proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20chromosome%20maintenance%20in%20the%20absence%20of%20essential%20telomere-capping%20proteins&rft.jtitle=Nature%20cell%20biology&rft.au=Zubko,%20Mikhajlo%20K&rft.date=2006-07-01&rft.volume=8&rft.issue=7&rft.spage=734&rft.epage=740&rft.pages=734-740&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1428&rft_dat=%3Cgale_proqu%3EA183058847%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222287661&rft_id=info:pmid/16767084&rft_galeid=A183058847&rfr_iscdi=true |