Linear chromosome maintenance in the absence of essential telomere-capping proteins

Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2006-07, Vol.8 (7), p.734-740
Hauptverfasser: Zubko, Mikhajlo K, Lydall, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 7
container_start_page 734
container_title Nature cell biology
container_volume 8
creator Zubko, Mikhajlo K
Lydall, David
description Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.
doi_str_mv 10.1038/ncb1428
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_762278890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183058847</galeid><sourcerecordid>A183058847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-9bd8b61e8bf6a2c8c863a96966518a7cc3649cc9f88140d8bc6091a221d87bf13</originalsourceid><addsrcrecordid>eNqF0l1r1TAYB_AgiptT_ARKceDmRWeSpnm5HEPn4IDg9DqkOU_PMtrkmKSg334ppzqOymwumja__JunPAi9JPiM4Ea-97YjjMpH6JAwwWvGhXo8z3lbi0bRA_QspVuMCWNYPEUHhAsusGSH6HrlPJhY2ZsYxpDCCNVonM_gjbdQOV_lG6hMl2B-DH0FqUyzM0OVYSg8Qm3Nduv8ptrGkMH59Bw96c2Q4MVyP0LfPn74evGpXn2-vLo4X9W2pW2uVbeWHScgu54baqWVvDGKK85bIo2wtuFMWat6KQnDxVqOFTGUkrUUXU-aI3Syyy0f_j5Bynp0ycIwGA9hSlpwSoWUChf59kHJZYmm-P-QCMqoUk2Bb_6At2GKvpSrabmk4Hw-4PEObcwA2vk-5GjsnKjPiWxwKyUTRZ39Q5WxhtHZ4KF35f3ehnd7G4rJ8CNvzJSSvrr-sm-Xf2RjSClCr7fRjSb-1ATruXX00jpFvl4qmroR1vdu6ZUCTncglSW_gXhf8t9Zr3bUmzxF-J31a_0O7W_S0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222287661</pqid></control><display><type>article</type><title>Linear chromosome maintenance in the absence of essential telomere-capping proteins</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zubko, Mikhajlo K ; Lydall, David</creator><creatorcontrib>Zubko, Mikhajlo K ; Lydall, David</creatorcontrib><description>Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.</description><identifier>ISSN: 1465-7392</identifier><identifier>ISSN: 1476-4679</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1428</identifier><identifier>PMID: 16767084</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell division ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Chromosome banding ; Chromosomes ; Chromosomes - genetics ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; DNA damage ; DNA Damage - physiology ; DNA Repair - physiology ; Evolution, Molecular ; letter ; Life Sciences ; Mutation ; Mutation - genetics ; Oxytricha nova ; Physiological aspects ; Proteins ; Recombination, Genetic - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Schizosaccharomyces pombe ; Stem Cells ; Telomerase ; Telomere - genetics ; Telomere - metabolism ; Telomere-Binding Proteins - genetics ; Telomere-Binding Proteins - metabolism ; Telomeres ; Yeast ; Yeast fungi ; Yeasts</subject><ispartof>Nature cell biology, 2006-07, Vol.8 (7), p.734-740</ispartof><rights>Springer Nature Limited 2006</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-9bd8b61e8bf6a2c8c863a96966518a7cc3649cc9f88140d8bc6091a221d87bf13</citedby><cites>FETCH-LOGICAL-c525t-9bd8b61e8bf6a2c8c863a96966518a7cc3649cc9f88140d8bc6091a221d87bf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1428$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1428$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2725,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16767084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zubko, Mikhajlo K</creatorcontrib><creatorcontrib>Lydall, David</creatorcontrib><title>Linear chromosome maintenance in the absence of essential telomere-capping proteins</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.</description><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell division</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromosome banding</subject><subject>Chromosomes</subject><subject>Chromosomes - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - physiology</subject><subject>DNA Repair - physiology</subject><subject>Evolution, Molecular</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Oxytricha nova</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Recombination, Genetic - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Stem Cells</subject><subject>Telomerase</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere-Binding Proteins - genetics</subject><subject>Telomere-Binding Proteins - metabolism</subject><subject>Telomeres</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><issn>1465-7392</issn><issn>1476-4679</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0l1r1TAYB_AgiptT_ARKceDmRWeSpnm5HEPn4IDg9DqkOU_PMtrkmKSg334ppzqOymwumja__JunPAi9JPiM4Ea-97YjjMpH6JAwwWvGhXo8z3lbi0bRA_QspVuMCWNYPEUHhAsusGSH6HrlPJhY2ZsYxpDCCNVonM_gjbdQOV_lG6hMl2B-DH0FqUyzM0OVYSg8Qm3Nduv8ptrGkMH59Bw96c2Q4MVyP0LfPn74evGpXn2-vLo4X9W2pW2uVbeWHScgu54baqWVvDGKK85bIo2wtuFMWat6KQnDxVqOFTGUkrUUXU-aI3Syyy0f_j5Bynp0ycIwGA9hSlpwSoWUChf59kHJZYmm-P-QCMqoUk2Bb_6At2GKvpSrabmk4Hw-4PEObcwA2vk-5GjsnKjPiWxwKyUTRZ39Q5WxhtHZ4KF35f3ehnd7G4rJ8CNvzJSSvrr-sm-Xf2RjSClCr7fRjSb-1ATruXX00jpFvl4qmroR1vdu6ZUCTncglSW_gXhf8t9Zr3bUmzxF-J31a_0O7W_S0Q</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Zubko, Mikhajlo K</creator><creator>Lydall, David</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Linear chromosome maintenance in the absence of essential telomere-capping proteins</title><author>Zubko, Mikhajlo K ; Lydall, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-9bd8b61e8bf6a2c8c863a96966518a7cc3649cc9f88140d8bc6091a221d87bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell division</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromosome banding</topic><topic>Chromosomes</topic><topic>Chromosomes - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - physiology</topic><topic>DNA Repair - physiology</topic><topic>Evolution, Molecular</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Oxytricha nova</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Recombination, Genetic - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Stem Cells</topic><topic>Telomerase</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere-Binding Proteins - genetics</topic><topic>Telomere-Binding Proteins - metabolism</topic><topic>Telomeres</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zubko, Mikhajlo K</creatorcontrib><creatorcontrib>Lydall, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zubko, Mikhajlo K</au><au>Lydall, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear chromosome maintenance in the absence of essential telomere-capping proteins</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>8</volume><issue>7</issue><spage>734</spage><epage>740</epage><pages>734-740</pages><issn>1465-7392</issn><issn>1476-4679</issn><eissn>1476-4679</eissn><abstract>Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16767084</pmid><doi>10.1038/ncb1428</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2006-07, Vol.8 (7), p.734-740
issn 1465-7392
1476-4679
1476-4679
language eng
recordid cdi_proquest_miscellaneous_762278890
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Cancer Research
Cell Biology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell division
Cell Nucleus - genetics
Cell Nucleus - metabolism
Chromosome banding
Chromosomes
Chromosomes - genetics
Deoxyribonucleic acid
Developmental Biology
DNA
DNA damage
DNA Damage - physiology
DNA Repair - physiology
Evolution, Molecular
letter
Life Sciences
Mutation
Mutation - genetics
Oxytricha nova
Physiological aspects
Proteins
Recombination, Genetic - genetics
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Schizosaccharomyces pombe
Stem Cells
Telomerase
Telomere - genetics
Telomere - metabolism
Telomere-Binding Proteins - genetics
Telomere-Binding Proteins - metabolism
Telomeres
Yeast
Yeast fungi
Yeasts
title Linear chromosome maintenance in the absence of essential telomere-capping proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20chromosome%20maintenance%20in%20the%20absence%20of%20essential%20telomere-capping%20proteins&rft.jtitle=Nature%20cell%20biology&rft.au=Zubko,%20Mikhajlo%20K&rft.date=2006-07-01&rft.volume=8&rft.issue=7&rft.spage=734&rft.epage=740&rft.pages=734-740&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1428&rft_dat=%3Cgale_proqu%3EA183058847%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222287661&rft_id=info:pmid/16767084&rft_galeid=A183058847&rfr_iscdi=true