Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair

We developed a novel system to create DNA double-strand breaks (DSBs) at defined endogenous sites in the human genome, and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation (ChIP). The detection of human ATM protein at site-specific D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2007-06, Vol.9 (6), p.683-690
Hauptverfasser: Kastan, Michael B, Berkovich, Elijahu, Monnat, Raymond J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 690
container_issue 6
container_start_page 683
container_title Nature cell biology
container_volume 9
creator Kastan, Michael B
Berkovich, Elijahu
Monnat, Raymond J
description We developed a novel system to create DNA double-strand breaks (DSBs) at defined endogenous sites in the human genome, and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation (ChIP). The detection of human ATM protein at site-specific DSBs required functional NBS1 protein, ATM kinase activity and ATM autophosphorylation on Ser 1981. DSB formation led to the localized disruption of nucleosomes, a process that depended on both functional NBS1 and ATM. These two proteins were also required for efficient recruitment of the repair cofactor XRCC4 to DSBs, and for efficient DSB repair. These results demonstrate the functional importance of ATM kinase activity and phosphorylation in the response to DSBs, and support a model in which ordered chromatin structure changes that occur after DNA breakage depend on functional NBS1 and ATM, and facilitate DNA DSB repair.
doi_str_mv 10.1038/ncb1599
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_762270283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A181808609</galeid><sourcerecordid>A181808609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-1b5f1745ad94b04ed1817cfba3e068e1d028c839b41b3b75b51ad1e630ab33a83</originalsourceid><addsrcrecordid>eNqF0l9r1TAUAPAiivuj-AmUojDxoTOnSZr08TqnDuaEbb74EpL0dHa2zTVpYH77pbtVuSJKHhIOv3PIOZwsewLkEAiVr0drgNf1vWwXmKgKVon6_vyueCFoXe5keyFcEwKMEfEw2wHBZAVQ7mZfzl2PIXdtvrr8mOuxyc_eXEDejbn96t2gp_QKk492ih7zwTWxTzE33tG3Z6u8cdH0WCQzR4xH_S33uNadf5Q9aHUf8PFy72ef3x1fHn0oTj-9PzlanRaWczkVYHib_sN1UzNDGDYgQdjWaIqkkggNKaWVtDYMDDWCGw66Aawo0YZSLel-9nJTd-3d94hhUkMXLPa9HtHFoERVliIVoUke_FsSzoVg7L8QakGAQJng8z_gtYt-TO2qsixZmjjhCb3YoCvdo-rG1qVh2bmiWqVmJZEVqZM6_ItKp8Ghs27EtkvxrYRXWwnJTHgzXekYgjq5ON-2y4ysdyF4bNXad4P2PxQQNW-QWjYoyWdLR9EM2Px2y8ok8HQDRj3vxC_ws8AtojXF6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222400105</pqid></control><display><type>article</type><title>Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kastan, Michael B ; Berkovich, Elijahu ; Monnat, Raymond J</creator><creatorcontrib>Kastan, Michael B ; Berkovich, Elijahu ; Monnat, Raymond J</creatorcontrib><description>We developed a novel system to create DNA double-strand breaks (DSBs) at defined endogenous sites in the human genome, and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation (ChIP). The detection of human ATM protein at site-specific DSBs required functional NBS1 protein, ATM kinase activity and ATM autophosphorylation on Ser 1981. DSB formation led to the localized disruption of nucleosomes, a process that depended on both functional NBS1 and ATM. These two proteins were also required for efficient recruitment of the repair cofactor XRCC4 to DSBs, and for efficient DSB repair. These results demonstrate the functional importance of ATM kinase activity and phosphorylation in the response to DSBs, and support a model in which ordered chromatin structure changes that occur after DNA breakage depend on functional NBS1 and ATM, and facilitate DNA DSB repair.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1599</identifier><identifier>PMID: 17486112</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - physiology ; Cell Line, Tumor ; Cellular proteins ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA Breaks, Double-Stranded ; DNA repair ; DNA Repair - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - physiology ; Genetic aspects ; Genomes ; Humans ; Infections ; Kinases ; Methods ; Microscopy ; Nuclear Proteins - genetics ; Nuclear Proteins - physiology ; Nucleosomes - genetics ; Nucleosomes - metabolism ; Phosphorylation ; Physiological aspects ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - physiology ; Proteins ; Structure ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - physiology ; Yeast</subject><ispartof>Nature cell biology, 2007-06, Vol.9 (6), p.683-690</ispartof><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-1b5f1745ad94b04ed1817cfba3e068e1d028c839b41b3b75b51ad1e630ab33a83</citedby><cites>FETCH-LOGICAL-c558t-1b5f1745ad94b04ed1817cfba3e068e1d028c839b41b3b75b51ad1e630ab33a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2729,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17486112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kastan, Michael B</creatorcontrib><creatorcontrib>Berkovich, Elijahu</creatorcontrib><creatorcontrib>Monnat, Raymond J</creatorcontrib><title>Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><description>We developed a novel system to create DNA double-strand breaks (DSBs) at defined endogenous sites in the human genome, and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation (ChIP). The detection of human ATM protein at site-specific DSBs required functional NBS1 protein, ATM kinase activity and ATM autophosphorylation on Ser 1981. DSB formation led to the localized disruption of nucleosomes, a process that depended on both functional NBS1 and ATM. These two proteins were also required for efficient recruitment of the repair cofactor XRCC4 to DSBs, and for efficient DSB repair. These results demonstrate the functional importance of ATM kinase activity and phosphorylation in the response to DSBs, and support a model in which ordered chromatin structure changes that occur after DNA breakage depend on functional NBS1 and ATM, and facilitate DNA DSB repair.</description><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - physiology</subject><subject>Cell Line, Tumor</subject><subject>Cellular proteins</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Humans</subject><subject>Infections</subject><subject>Kinases</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - physiology</subject><subject>Nucleosomes - genetics</subject><subject>Nucleosomes - metabolism</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - physiology</subject><subject>Proteins</subject><subject>Structure</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - physiology</subject><subject>Yeast</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0l9r1TAUAPAiivuj-AmUojDxoTOnSZr08TqnDuaEbb74EpL0dHa2zTVpYH77pbtVuSJKHhIOv3PIOZwsewLkEAiVr0drgNf1vWwXmKgKVon6_vyueCFoXe5keyFcEwKMEfEw2wHBZAVQ7mZfzl2PIXdtvrr8mOuxyc_eXEDejbn96t2gp_QKk492ih7zwTWxTzE33tG3Z6u8cdH0WCQzR4xH_S33uNadf5Q9aHUf8PFy72ef3x1fHn0oTj-9PzlanRaWczkVYHib_sN1UzNDGDYgQdjWaIqkkggNKaWVtDYMDDWCGw66Aawo0YZSLel-9nJTd-3d94hhUkMXLPa9HtHFoERVliIVoUke_FsSzoVg7L8QakGAQJng8z_gtYt-TO2qsixZmjjhCb3YoCvdo-rG1qVh2bmiWqVmJZEVqZM6_ItKp8Ghs27EtkvxrYRXWwnJTHgzXekYgjq5ON-2y4ysdyF4bNXad4P2PxQQNW-QWjYoyWdLR9EM2Px2y8ok8HQDRj3vxC_ws8AtojXF6Q</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Kastan, Michael B</creator><creator>Berkovich, Elijahu</creator><creator>Monnat, Raymond J</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070601</creationdate><title>Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair</title><author>Kastan, Michael B ; Berkovich, Elijahu ; Monnat, Raymond J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-1b5f1745ad94b04ed1817cfba3e068e1d028c839b41b3b75b51ad1e630ab33a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - physiology</topic><topic>Cell Line, Tumor</topic><topic>Cellular proteins</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Humans</topic><topic>Infections</topic><topic>Kinases</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - physiology</topic><topic>Nucleosomes - genetics</topic><topic>Nucleosomes - metabolism</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - physiology</topic><topic>Proteins</topic><topic>Structure</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - physiology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kastan, Michael B</creatorcontrib><creatorcontrib>Berkovich, Elijahu</creatorcontrib><creatorcontrib>Monnat, Raymond J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kastan, Michael B</au><au>Berkovich, Elijahu</au><au>Monnat, Raymond J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair</atitle><jtitle>Nature cell biology</jtitle><addtitle>Nat Cell Biol</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>9</volume><issue>6</issue><spage>683</spage><epage>690</epage><pages>683-690</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>We developed a novel system to create DNA double-strand breaks (DSBs) at defined endogenous sites in the human genome, and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation (ChIP). The detection of human ATM protein at site-specific DSBs required functional NBS1 protein, ATM kinase activity and ATM autophosphorylation on Ser 1981. DSB formation led to the localized disruption of nucleosomes, a process that depended on both functional NBS1 and ATM. These two proteins were also required for efficient recruitment of the repair cofactor XRCC4 to DSBs, and for efficient DSB repair. These results demonstrate the functional importance of ATM kinase activity and phosphorylation in the response to DSBs, and support a model in which ordered chromatin structure changes that occur after DNA breakage depend on functional NBS1 and ATM, and facilitate DNA DSB repair.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>17486112</pmid><doi>10.1038/ncb1599</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2007-06, Vol.9 (6), p.683-690
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_762270283
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Ataxia Telangiectasia Mutated Proteins
Cell Cycle Proteins - genetics
Cell Cycle Proteins - physiology
Cell Line, Tumor
Cellular proteins
Chromatin
Chromatin - genetics
Chromatin - metabolism
Deoxyribonucleic acid
DNA
DNA - genetics
DNA Breaks, Double-Stranded
DNA repair
DNA Repair - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - physiology
Genetic aspects
Genomes
Humans
Infections
Kinases
Methods
Microscopy
Nuclear Proteins - genetics
Nuclear Proteins - physiology
Nucleosomes - genetics
Nucleosomes - metabolism
Phosphorylation
Physiological aspects
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - physiology
Proteins
Structure
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - physiology
Yeast
title Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20of%20ATM%20and%20NBS1%20in%20chromatin%20structure%20modulation%20and%20DNA%20double-strand%20break%20repair&rft.jtitle=Nature%20cell%20biology&rft.au=Kastan,%20Michael%20B&rft.date=2007-06-01&rft.volume=9&rft.issue=6&rft.spage=683&rft.epage=690&rft.pages=683-690&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1599&rft_dat=%3Cgale_proqu%3EA181808609%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222400105&rft_id=info:pmid/17486112&rft_galeid=A181808609&rfr_iscdi=true