Selective adsorption behavior of phosphate onto aluminum hydroxide gel

The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150 °C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2010-09, Vol.181 (1), p.574-579
Hauptverfasser: Kawasaki, Naohito, Ogata, Fumihiko, Tominaga, Hisato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 579
container_issue 1
container_start_page 574
container_title Journal of hazardous materials
container_volume 181
creator Kawasaki, Naohito
Ogata, Fumihiko
Tominaga, Hisato
description The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150 °C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed into γ- and α-alumina by the calcinations treatment. The amount of phosphate adsorbed onto AHG increases at calcining temperatures of 300–700 °C and decreases above a calcining temperature of 800 °C. It was found that AHG selectively adsorbs phosphate ions, but not other anions, and shows the highest adsorption capacity at pH 4–6. Further, the alkali resistance of AHG increased with calcination, and more than 80% of the phosphate adsorbed with an NaOH aqueous solution underwent desorption. The addition of colloidal alumina and colloidal silica resulted in the formation of granules of 500–840 μm size. The amount of phosphate adsorbed onto AHG after granulation was similar to that before granulation. Thus, the phosphate absorption capacity of AHG did not decrease after granulation suggesting that AHG can be used as a phosphate adsorbent.
doi_str_mv 10.1016/j.jhazmat.2010.05.051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762265512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389410006345</els_id><sourcerecordid>1770331467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-c612b53c9e1a816def7cd6c3ab636baf931aa6c8d4fa34cbceec1038ad2b4eb33</originalsourceid><addsrcrecordid>eNqF0VGL1DAQB_AgireefgSlL6IvXZNMk3afRA7vFA58UJ_DNJnaLG1Tk3bx_PRm2fV882AgEH6TGfJn7KXgW8GFfrff7nv8PeKylTzfcZVLPGIb0dRQAoB-zDYceFVCs6su2LOU9pxzUavqKbuQXHMFUmzY9VcayC7-QAW6FOK8-DAVLfV48CEWoSvmPqS5x4WKMC2hwGEd_bSORX_nYvjlHRU_aHjOnnQ4JHpxPi_Z9-uP364-lbdfbj5ffbgtrZJqKa0WslVgdySwEdpRV1unLWCrQbfY7UAgatu4qkOobGuJrODQoJNtRS3AJXtzeneO4edKaTGjT5aGAScKazK1llIrJeTDEmCXh_I6y7f_laKuOYCo9JGqE7UxpBSpM3P0I8Y7I7g5xmL25hyLOcZiuMolct-r84i1Hcndd_3NIYPXZ4DJ4tBFnKxP_xxwXVeyye79yVH-5IOnaJL1NFlyPuYYjQv-gVX-AJfOrrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770331467</pqid></control><display><type>article</type><title>Selective adsorption behavior of phosphate onto aluminum hydroxide gel</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kawasaki, Naohito ; Ogata, Fumihiko ; Tominaga, Hisato</creator><creatorcontrib>Kawasaki, Naohito ; Ogata, Fumihiko ; Tominaga, Hisato</creatorcontrib><description>The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150 °C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed into γ- and α-alumina by the calcinations treatment. The amount of phosphate adsorbed onto AHG increases at calcining temperatures of 300–700 °C and decreases above a calcining temperature of 800 °C. It was found that AHG selectively adsorbs phosphate ions, but not other anions, and shows the highest adsorption capacity at pH 4–6. Further, the alkali resistance of AHG increased with calcination, and more than 80% of the phosphate adsorbed with an NaOH aqueous solution underwent desorption. The addition of colloidal alumina and colloidal silica resulted in the formation of granules of 500–840 μm size. The amount of phosphate adsorbed onto AHG after granulation was similar to that before granulation. Thus, the phosphate absorption capacity of AHG did not decrease after granulation suggesting that AHG can be used as a phosphate adsorbent.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2010.05.051</identifier><identifier>PMID: 20605321</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adsorption ; Adsorption isotherms ; Alumina hydrate ; Aluminum Hydroxide - chemistry ; Aluminum hydroxide gel ; Applied sciences ; Calcines ; Chemical engineering ; Colloids ; Exact sciences and technology ; Granulation ; Hydrogen-Ion Concentration ; Ion–solid interactions ; Particle Size ; Phosphate ; Phosphates ; Phosphates - isolation &amp; purification ; Pollution ; Roasting ; Sintering, pelletization, granulation ; Solid-solid systems ; Specific surface ; Surface chemistry ; Temperature ; X-Ray Diffraction</subject><ispartof>Journal of hazardous materials, 2010-09, Vol.181 (1), p.574-579</ispartof><rights>2010</rights><rights>2014 INIST-CNRS</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-c612b53c9e1a816def7cd6c3ab636baf931aa6c8d4fa34cbceec1038ad2b4eb33</citedby><cites>FETCH-LOGICAL-c525t-c612b53c9e1a816def7cd6c3ab636baf931aa6c8d4fa34cbceec1038ad2b4eb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2010.05.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23067428$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20605321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawasaki, Naohito</creatorcontrib><creatorcontrib>Ogata, Fumihiko</creatorcontrib><creatorcontrib>Tominaga, Hisato</creatorcontrib><title>Selective adsorption behavior of phosphate onto aluminum hydroxide gel</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150 °C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed into γ- and α-alumina by the calcinations treatment. The amount of phosphate adsorbed onto AHG increases at calcining temperatures of 300–700 °C and decreases above a calcining temperature of 800 °C. It was found that AHG selectively adsorbs phosphate ions, but not other anions, and shows the highest adsorption capacity at pH 4–6. Further, the alkali resistance of AHG increased with calcination, and more than 80% of the phosphate adsorbed with an NaOH aqueous solution underwent desorption. The addition of colloidal alumina and colloidal silica resulted in the formation of granules of 500–840 μm size. The amount of phosphate adsorbed onto AHG after granulation was similar to that before granulation. Thus, the phosphate absorption capacity of AHG did not decrease after granulation suggesting that AHG can be used as a phosphate adsorbent.</description><subject>Adsorption</subject><subject>Adsorption isotherms</subject><subject>Alumina hydrate</subject><subject>Aluminum Hydroxide - chemistry</subject><subject>Aluminum hydroxide gel</subject><subject>Applied sciences</subject><subject>Calcines</subject><subject>Chemical engineering</subject><subject>Colloids</subject><subject>Exact sciences and technology</subject><subject>Granulation</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion–solid interactions</subject><subject>Particle Size</subject><subject>Phosphate</subject><subject>Phosphates</subject><subject>Phosphates - isolation &amp; purification</subject><subject>Pollution</subject><subject>Roasting</subject><subject>Sintering, pelletization, granulation</subject><subject>Solid-solid systems</subject><subject>Specific surface</subject><subject>Surface chemistry</subject><subject>Temperature</subject><subject>X-Ray Diffraction</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0VGL1DAQB_AgireefgSlL6IvXZNMk3afRA7vFA58UJ_DNJnaLG1Tk3bx_PRm2fV882AgEH6TGfJn7KXgW8GFfrff7nv8PeKylTzfcZVLPGIb0dRQAoB-zDYceFVCs6su2LOU9pxzUavqKbuQXHMFUmzY9VcayC7-QAW6FOK8-DAVLfV48CEWoSvmPqS5x4WKMC2hwGEd_bSORX_nYvjlHRU_aHjOnnQ4JHpxPi_Z9-uP364-lbdfbj5ffbgtrZJqKa0WslVgdySwEdpRV1unLWCrQbfY7UAgatu4qkOobGuJrODQoJNtRS3AJXtzeneO4edKaTGjT5aGAScKazK1llIrJeTDEmCXh_I6y7f_laKuOYCo9JGqE7UxpBSpM3P0I8Y7I7g5xmL25hyLOcZiuMolct-r84i1Hcndd_3NIYPXZ4DJ4tBFnKxP_xxwXVeyye79yVH-5IOnaJL1NFlyPuYYjQv-gVX-AJfOrrU</recordid><startdate>20100915</startdate><enddate>20100915</enddate><creator>Kawasaki, Naohito</creator><creator>Ogata, Fumihiko</creator><creator>Tominaga, Hisato</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20100915</creationdate><title>Selective adsorption behavior of phosphate onto aluminum hydroxide gel</title><author>Kawasaki, Naohito ; Ogata, Fumihiko ; Tominaga, Hisato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-c612b53c9e1a816def7cd6c3ab636baf931aa6c8d4fa34cbceec1038ad2b4eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Adsorption isotherms</topic><topic>Alumina hydrate</topic><topic>Aluminum Hydroxide - chemistry</topic><topic>Aluminum hydroxide gel</topic><topic>Applied sciences</topic><topic>Calcines</topic><topic>Chemical engineering</topic><topic>Colloids</topic><topic>Exact sciences and technology</topic><topic>Granulation</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion–solid interactions</topic><topic>Particle Size</topic><topic>Phosphate</topic><topic>Phosphates</topic><topic>Phosphates - isolation &amp; purification</topic><topic>Pollution</topic><topic>Roasting</topic><topic>Sintering, pelletization, granulation</topic><topic>Solid-solid systems</topic><topic>Specific surface</topic><topic>Surface chemistry</topic><topic>Temperature</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawasaki, Naohito</creatorcontrib><creatorcontrib>Ogata, Fumihiko</creatorcontrib><creatorcontrib>Tominaga, Hisato</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawasaki, Naohito</au><au>Ogata, Fumihiko</au><au>Tominaga, Hisato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective adsorption behavior of phosphate onto aluminum hydroxide gel</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2010-09-15</date><risdate>2010</risdate><volume>181</volume><issue>1</issue><spage>574</spage><epage>579</epage><pages>574-579</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150 °C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed into γ- and α-alumina by the calcinations treatment. The amount of phosphate adsorbed onto AHG increases at calcining temperatures of 300–700 °C and decreases above a calcining temperature of 800 °C. It was found that AHG selectively adsorbs phosphate ions, but not other anions, and shows the highest adsorption capacity at pH 4–6. Further, the alkali resistance of AHG increased with calcination, and more than 80% of the phosphate adsorbed with an NaOH aqueous solution underwent desorption. The addition of colloidal alumina and colloidal silica resulted in the formation of granules of 500–840 μm size. The amount of phosphate adsorbed onto AHG after granulation was similar to that before granulation. Thus, the phosphate absorption capacity of AHG did not decrease after granulation suggesting that AHG can be used as a phosphate adsorbent.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20605321</pmid><doi>10.1016/j.jhazmat.2010.05.051</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2010-09, Vol.181 (1), p.574-579
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_762265512
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adsorption
Adsorption isotherms
Alumina hydrate
Aluminum Hydroxide - chemistry
Aluminum hydroxide gel
Applied sciences
Calcines
Chemical engineering
Colloids
Exact sciences and technology
Granulation
Hydrogen-Ion Concentration
Ion–solid interactions
Particle Size
Phosphate
Phosphates
Phosphates - isolation & purification
Pollution
Roasting
Sintering, pelletization, granulation
Solid-solid systems
Specific surface
Surface chemistry
Temperature
X-Ray Diffraction
title Selective adsorption behavior of phosphate onto aluminum hydroxide gel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20adsorption%20behavior%20of%20phosphate%20onto%20aluminum%20hydroxide%20gel&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Kawasaki,%20Naohito&rft.date=2010-09-15&rft.volume=181&rft.issue=1&rft.spage=574&rft.epage=579&rft.pages=574-579&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2010.05.051&rft_dat=%3Cproquest_cross%3E1770331467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770331467&rft_id=info:pmid/20605321&rft_els_id=S0304389410006345&rfr_iscdi=true