Selective adsorption behavior of phosphate onto aluminum hydroxide gel
The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150 °C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed i...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2010-09, Vol.181 (1), p.574-579 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 579 |
---|---|
container_issue | 1 |
container_start_page | 574 |
container_title | Journal of hazardous materials |
container_volume | 181 |
creator | Kawasaki, Naohito Ogata, Fumihiko Tominaga, Hisato |
description | The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150
°C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed into γ- and α-alumina by the calcinations treatment. The amount of phosphate adsorbed onto AHG increases at calcining temperatures of 300–700
°C and decreases above a calcining temperature of 800
°C. It was found that AHG selectively adsorbs phosphate ions, but not other anions, and shows the highest adsorption capacity at pH 4–6. Further, the alkali resistance of AHG increased with calcination, and more than 80% of the phosphate adsorbed with an NaOH aqueous solution underwent desorption. The addition of colloidal alumina and colloidal silica resulted in the formation of granules of 500–840
μm size. The amount of phosphate adsorbed onto AHG after granulation was similar to that before granulation. Thus, the phosphate absorption capacity of AHG did not decrease after granulation suggesting that AHG can be used as a phosphate adsorbent. |
doi_str_mv | 10.1016/j.jhazmat.2010.05.051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762265512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389410006345</els_id><sourcerecordid>1770331467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-c612b53c9e1a816def7cd6c3ab636baf931aa6c8d4fa34cbceec1038ad2b4eb33</originalsourceid><addsrcrecordid>eNqF0VGL1DAQB_AgireefgSlL6IvXZNMk3afRA7vFA58UJ_DNJnaLG1Tk3bx_PRm2fV882AgEH6TGfJn7KXgW8GFfrff7nv8PeKylTzfcZVLPGIb0dRQAoB-zDYceFVCs6su2LOU9pxzUavqKbuQXHMFUmzY9VcayC7-QAW6FOK8-DAVLfV48CEWoSvmPqS5x4WKMC2hwGEd_bSORX_nYvjlHRU_aHjOnnQ4JHpxPi_Z9-uP364-lbdfbj5ffbgtrZJqKa0WslVgdySwEdpRV1unLWCrQbfY7UAgatu4qkOobGuJrODQoJNtRS3AJXtzeneO4edKaTGjT5aGAScKazK1llIrJeTDEmCXh_I6y7f_laKuOYCo9JGqE7UxpBSpM3P0I8Y7I7g5xmL25hyLOcZiuMolct-r84i1Hcndd_3NIYPXZ4DJ4tBFnKxP_xxwXVeyye79yVH-5IOnaJL1NFlyPuYYjQv-gVX-AJfOrrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770331467</pqid></control><display><type>article</type><title>Selective adsorption behavior of phosphate onto aluminum hydroxide gel</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kawasaki, Naohito ; Ogata, Fumihiko ; Tominaga, Hisato</creator><creatorcontrib>Kawasaki, Naohito ; Ogata, Fumihiko ; Tominaga, Hisato</creatorcontrib><description>The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150
°C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed into γ- and α-alumina by the calcinations treatment. The amount of phosphate adsorbed onto AHG increases at calcining temperatures of 300–700
°C and decreases above a calcining temperature of 800
°C. It was found that AHG selectively adsorbs phosphate ions, but not other anions, and shows the highest adsorption capacity at pH 4–6. Further, the alkali resistance of AHG increased with calcination, and more than 80% of the phosphate adsorbed with an NaOH aqueous solution underwent desorption. The addition of colloidal alumina and colloidal silica resulted in the formation of granules of 500–840
μm size. The amount of phosphate adsorbed onto AHG after granulation was similar to that before granulation. Thus, the phosphate absorption capacity of AHG did not decrease after granulation suggesting that AHG can be used as a phosphate adsorbent.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2010.05.051</identifier><identifier>PMID: 20605321</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adsorption ; Adsorption isotherms ; Alumina hydrate ; Aluminum Hydroxide - chemistry ; Aluminum hydroxide gel ; Applied sciences ; Calcines ; Chemical engineering ; Colloids ; Exact sciences and technology ; Granulation ; Hydrogen-Ion Concentration ; Ion–solid interactions ; Particle Size ; Phosphate ; Phosphates ; Phosphates - isolation & purification ; Pollution ; Roasting ; Sintering, pelletization, granulation ; Solid-solid systems ; Specific surface ; Surface chemistry ; Temperature ; X-Ray Diffraction</subject><ispartof>Journal of hazardous materials, 2010-09, Vol.181 (1), p.574-579</ispartof><rights>2010</rights><rights>2014 INIST-CNRS</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-c612b53c9e1a816def7cd6c3ab636baf931aa6c8d4fa34cbceec1038ad2b4eb33</citedby><cites>FETCH-LOGICAL-c525t-c612b53c9e1a816def7cd6c3ab636baf931aa6c8d4fa34cbceec1038ad2b4eb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2010.05.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23067428$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20605321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawasaki, Naohito</creatorcontrib><creatorcontrib>Ogata, Fumihiko</creatorcontrib><creatorcontrib>Tominaga, Hisato</creatorcontrib><title>Selective adsorption behavior of phosphate onto aluminum hydroxide gel</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150
°C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed into γ- and α-alumina by the calcinations treatment. The amount of phosphate adsorbed onto AHG increases at calcining temperatures of 300–700
°C and decreases above a calcining temperature of 800
°C. It was found that AHG selectively adsorbs phosphate ions, but not other anions, and shows the highest adsorption capacity at pH 4–6. Further, the alkali resistance of AHG increased with calcination, and more than 80% of the phosphate adsorbed with an NaOH aqueous solution underwent desorption. The addition of colloidal alumina and colloidal silica resulted in the formation of granules of 500–840
μm size. The amount of phosphate adsorbed onto AHG after granulation was similar to that before granulation. Thus, the phosphate absorption capacity of AHG did not decrease after granulation suggesting that AHG can be used as a phosphate adsorbent.</description><subject>Adsorption</subject><subject>Adsorption isotherms</subject><subject>Alumina hydrate</subject><subject>Aluminum Hydroxide - chemistry</subject><subject>Aluminum hydroxide gel</subject><subject>Applied sciences</subject><subject>Calcines</subject><subject>Chemical engineering</subject><subject>Colloids</subject><subject>Exact sciences and technology</subject><subject>Granulation</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion–solid interactions</subject><subject>Particle Size</subject><subject>Phosphate</subject><subject>Phosphates</subject><subject>Phosphates - isolation & purification</subject><subject>Pollution</subject><subject>Roasting</subject><subject>Sintering, pelletization, granulation</subject><subject>Solid-solid systems</subject><subject>Specific surface</subject><subject>Surface chemistry</subject><subject>Temperature</subject><subject>X-Ray Diffraction</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0VGL1DAQB_AgireefgSlL6IvXZNMk3afRA7vFA58UJ_DNJnaLG1Tk3bx_PRm2fV882AgEH6TGfJn7KXgW8GFfrff7nv8PeKylTzfcZVLPGIb0dRQAoB-zDYceFVCs6su2LOU9pxzUavqKbuQXHMFUmzY9VcayC7-QAW6FOK8-DAVLfV48CEWoSvmPqS5x4WKMC2hwGEd_bSORX_nYvjlHRU_aHjOnnQ4JHpxPi_Z9-uP364-lbdfbj5ffbgtrZJqKa0WslVgdySwEdpRV1unLWCrQbfY7UAgatu4qkOobGuJrODQoJNtRS3AJXtzeneO4edKaTGjT5aGAScKazK1llIrJeTDEmCXh_I6y7f_laKuOYCo9JGqE7UxpBSpM3P0I8Y7I7g5xmL25hyLOcZiuMolct-r84i1Hcndd_3NIYPXZ4DJ4tBFnKxP_xxwXVeyye79yVH-5IOnaJL1NFlyPuYYjQv-gVX-AJfOrrU</recordid><startdate>20100915</startdate><enddate>20100915</enddate><creator>Kawasaki, Naohito</creator><creator>Ogata, Fumihiko</creator><creator>Tominaga, Hisato</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20100915</creationdate><title>Selective adsorption behavior of phosphate onto aluminum hydroxide gel</title><author>Kawasaki, Naohito ; Ogata, Fumihiko ; Tominaga, Hisato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-c612b53c9e1a816def7cd6c3ab636baf931aa6c8d4fa34cbceec1038ad2b4eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Adsorption isotherms</topic><topic>Alumina hydrate</topic><topic>Aluminum Hydroxide - chemistry</topic><topic>Aluminum hydroxide gel</topic><topic>Applied sciences</topic><topic>Calcines</topic><topic>Chemical engineering</topic><topic>Colloids</topic><topic>Exact sciences and technology</topic><topic>Granulation</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion–solid interactions</topic><topic>Particle Size</topic><topic>Phosphate</topic><topic>Phosphates</topic><topic>Phosphates - isolation & purification</topic><topic>Pollution</topic><topic>Roasting</topic><topic>Sintering, pelletization, granulation</topic><topic>Solid-solid systems</topic><topic>Specific surface</topic><topic>Surface chemistry</topic><topic>Temperature</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawasaki, Naohito</creatorcontrib><creatorcontrib>Ogata, Fumihiko</creatorcontrib><creatorcontrib>Tominaga, Hisato</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawasaki, Naohito</au><au>Ogata, Fumihiko</au><au>Tominaga, Hisato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective adsorption behavior of phosphate onto aluminum hydroxide gel</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2010-09-15</date><risdate>2010</risdate><volume>181</volume><issue>1</issue><spage>574</spage><epage>579</epage><pages>574-579</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>The specific surface area and X-ray diffraction patterns for an aluminum hydroxide gel (AHG) calcined at 300–1150
°C, the number of surface hydroxyl groups in the AHG, and the adsorption isotherms of phosphate on AHG were measured in order to develop a phosphate recovery agent. AHG was transformed into γ- and α-alumina by the calcinations treatment. The amount of phosphate adsorbed onto AHG increases at calcining temperatures of 300–700
°C and decreases above a calcining temperature of 800
°C. It was found that AHG selectively adsorbs phosphate ions, but not other anions, and shows the highest adsorption capacity at pH 4–6. Further, the alkali resistance of AHG increased with calcination, and more than 80% of the phosphate adsorbed with an NaOH aqueous solution underwent desorption. The addition of colloidal alumina and colloidal silica resulted in the formation of granules of 500–840
μm size. The amount of phosphate adsorbed onto AHG after granulation was similar to that before granulation. Thus, the phosphate absorption capacity of AHG did not decrease after granulation suggesting that AHG can be used as a phosphate adsorbent.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20605321</pmid><doi>10.1016/j.jhazmat.2010.05.051</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2010-09, Vol.181 (1), p.574-579 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_762265512 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adsorption Adsorption isotherms Alumina hydrate Aluminum Hydroxide - chemistry Aluminum hydroxide gel Applied sciences Calcines Chemical engineering Colloids Exact sciences and technology Granulation Hydrogen-Ion Concentration Ion–solid interactions Particle Size Phosphate Phosphates Phosphates - isolation & purification Pollution Roasting Sintering, pelletization, granulation Solid-solid systems Specific surface Surface chemistry Temperature X-Ray Diffraction |
title | Selective adsorption behavior of phosphate onto aluminum hydroxide gel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20adsorption%20behavior%20of%20phosphate%20onto%20aluminum%20hydroxide%20gel&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Kawasaki,%20Naohito&rft.date=2010-09-15&rft.volume=181&rft.issue=1&rft.spage=574&rft.epage=579&rft.pages=574-579&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2010.05.051&rft_dat=%3Cproquest_cross%3E1770331467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770331467&rft_id=info:pmid/20605321&rft_els_id=S0304389410006345&rfr_iscdi=true |