Receptor-mediated regulation of guanylate cyclase activity in spermatozoa
Two peptides, speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) and resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH2), which activate sperm respiration and motility and elevate cyclic GMP concentrations in a species-specific manner, were tested for effects on guanylate cyclase act...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1985-07, Vol.260 (14), p.8390-8396 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two peptides, speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) and resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH2), which activate sperm respiration and motility and elevate cyclic GMP concentrations in a species-specific manner, were tested for effects on guanylate cyclase activity. The guanylate cyclase of sea urchin spermatozoa is a glycoprotein and it is localized entirely on the plasma membrane. When intact sea urchin sperm cells were incubated with the appropriate peptide for time periods as short as 5 s and subsequently homogenized in detergent, guanylate cyclase activity was found to be as low as 10% of the activity of cells not treated with peptide. The peptides showed complete species specificity and analogues of one peptide (speract) caused decreases in enzyme activity coincident with their receptor binding properties. The peptides did not inhibit enzyme activity when added after detergent solubilization of the enzyme. When detergent-solubilized spermatozoa were incubated at 22 degrees C, guanylate cyclase activity declined in previously nontreated cells to the peptide-treated level. The rate of decline was dependent on temperature and protein concentration. When spermatozoa were first incubated with 32P, the decrease in guanylate cyclase activity was accompanied by a shift in the apparent molecular weight of a major plasma membrane protein (160,000-150,000) and a loss of 32P label from the 160,000 band. Other agents (Monensin A, NH4Cl) which were capable of stimulating sperm respiration and motility also caused decreases of guanylate cyclase activity when added to intact but not detergent-solubilized spermatozoa. The maximal decrease in guanylate cyclase activity occurred 5-10 min after addition of these agents. The enzyme response to Monensin A required extracellular Na+ suggestive that the ionophore caused the effect on guanylate cyclase activity by virtue of its ability to catalyze Na+/H+ exchange. These studies demonstrate that guanylate cyclase activity of sperm cells can be altered by the specific interaction of egg-associated peptides with their plasma membrane receptors. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(17)39486-3 |