A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation

In a bovine cervical spine model, the ultimate and fatigue strengths as well as relative magnetic resonance imaging artifact produced by titanium, cobalt chrome, and stainless-steel wires in various gauges were assessed. Single-cycle and fatigue strength of wire constructs were measured. Although la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spine (Philadelphia, PA. 1976) PA. 1976), 1993-10, Vol.18 (14), p.1991-1994
Hauptverfasser: SCUDERI, G. J, GREENBERG, S. S, COHEN, D. S, LATTA, L. L, EISMONT, F. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1994
container_issue 14
container_start_page 1991
container_title Spine (Philadelphia, PA. 1976)
container_volume 18
creator SCUDERI, G. J
GREENBERG, S. S
COHEN, D. S
LATTA, L. L
EISMONT, F. J
description In a bovine cervical spine model, the ultimate and fatigue strengths as well as relative magnetic resonance imaging artifact produced by titanium, cobalt chrome, and stainless-steel wires in various gauges were assessed. Single-cycle and fatigue strength of wire constructs were measured. Although larger wires generally had greater static strength, fatigue strength was mixed. Sixteen-gauge titanium, and all stainless-steel models (22-gauge braided, 18-gauge, and Songer cable) withstood 10,000 cycles without failure, whereas all other constructs rarely could withstand a similar 10,000 cycles. Magnetic resonance imaging was performed on calf cervical spines instrumented with the various materials. Titanium exhibited the least artifact, stainless-steel showed the greatest artifact, and cobalt chrome an intermediate amount. Although titanium wire produces the least amount of magnetic resonance imaging artifact, it remains a poor choice for implant fixation because its notch sensitivity reduces its fatigue resistance compared with stainless steel, which remains the more dependable choice.
doi_str_mv 10.1097/00007632-199310001-00011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76138683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76138683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-ce52eabdc55da3bf6e19ee54c47f964834be2f00040054d7125d0fc59e0f85593</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EKqXwCUheIHYBPxN7WVW8pEpsYB05zrgYJU6x2wJ_j_ugs_BoZu5caw5CmJI7SnR1T3JUJWcF1ZrTXNBi-9ATNKaSqYJSqU_RmPCSFUzw8hxdpPSZJSWneoRGilVMCzVGdoobP_RgP0zw1nQYNqZbm5UfAh4c7s0iwMpbHCENwQQL2OeeD4vCDv0y65oO8LePuR-whbjZmaSlD4Cd_9kZXaIzZ7oEV4c8Qe-PD2-z52L--vQym84LK5RYFRYkA9O0VsrW8MaVQDWAFFZUTpdCcdEAc_kGQYgUbUWZbImzUgNxSkrNJ-h277uMw9ca0qrufbLQdSbAsE51VVKuSsWzUO2FNg4pRXD1Muaz4m9NSb3lW__zrY986x3fvHp9-GPd9NAeFw9A8_zmMDcpk3AxM_PpKOOV0lxz_gdHgIPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76138683</pqid></control><display><type>article</type><title>A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>SCUDERI, G. J ; GREENBERG, S. S ; COHEN, D. S ; LATTA, L. L ; EISMONT, F. J</creator><creatorcontrib>SCUDERI, G. J ; GREENBERG, S. S ; COHEN, D. S ; LATTA, L. L ; EISMONT, F. J</creatorcontrib><description>In a bovine cervical spine model, the ultimate and fatigue strengths as well as relative magnetic resonance imaging artifact produced by titanium, cobalt chrome, and stainless-steel wires in various gauges were assessed. Single-cycle and fatigue strength of wire constructs were measured. Although larger wires generally had greater static strength, fatigue strength was mixed. Sixteen-gauge titanium, and all stainless-steel models (22-gauge braided, 18-gauge, and Songer cable) withstood 10,000 cycles without failure, whereas all other constructs rarely could withstand a similar 10,000 cycles. Magnetic resonance imaging was performed on calf cervical spines instrumented with the various materials. Titanium exhibited the least artifact, stainless-steel showed the greatest artifact, and cobalt chrome an intermediate amount. Although titanium wire produces the least amount of magnetic resonance imaging artifact, it remains a poor choice for implant fixation because its notch sensitivity reduces its fatigue resistance compared with stainless steel, which remains the more dependable choice.</description><identifier>ISSN: 0362-2436</identifier><identifier>EISSN: 1528-1159</identifier><identifier>DOI: 10.1097/00007632-199310001-00011</identifier><identifier>PMID: 8272948</identifier><identifier>CODEN: SPINDD</identifier><language>eng</language><publisher>Philadelphia, PA: Lippincott</publisher><subject>Animals ; Biological and medical sciences ; Biomechanical Phenomena ; Bone Wires ; Cattle ; Cervical Vertebrae - surgery ; Chromium Alloys ; Magnetic Resonance Imaging ; Medical sciences ; Orthopedic surgery ; Spinal Fusion - instrumentation ; Stainless Steel ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Titanium</subject><ispartof>Spine (Philadelphia, PA. 1976), 1993-10, Vol.18 (14), p.1991-1994</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-ce52eabdc55da3bf6e19ee54c47f964834be2f00040054d7125d0fc59e0f85593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3789393$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8272948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SCUDERI, G. J</creatorcontrib><creatorcontrib>GREENBERG, S. S</creatorcontrib><creatorcontrib>COHEN, D. S</creatorcontrib><creatorcontrib>LATTA, L. L</creatorcontrib><creatorcontrib>EISMONT, F. J</creatorcontrib><title>A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation</title><title>Spine (Philadelphia, PA. 1976)</title><addtitle>Spine (Phila Pa 1976)</addtitle><description>In a bovine cervical spine model, the ultimate and fatigue strengths as well as relative magnetic resonance imaging artifact produced by titanium, cobalt chrome, and stainless-steel wires in various gauges were assessed. Single-cycle and fatigue strength of wire constructs were measured. Although larger wires generally had greater static strength, fatigue strength was mixed. Sixteen-gauge titanium, and all stainless-steel models (22-gauge braided, 18-gauge, and Songer cable) withstood 10,000 cycles without failure, whereas all other constructs rarely could withstand a similar 10,000 cycles. Magnetic resonance imaging was performed on calf cervical spines instrumented with the various materials. Titanium exhibited the least artifact, stainless-steel showed the greatest artifact, and cobalt chrome an intermediate amount. Although titanium wire produces the least amount of magnetic resonance imaging artifact, it remains a poor choice for implant fixation because its notch sensitivity reduces its fatigue resistance compared with stainless steel, which remains the more dependable choice.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Bone Wires</subject><subject>Cattle</subject><subject>Cervical Vertebrae - surgery</subject><subject>Chromium Alloys</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical sciences</subject><subject>Orthopedic surgery</subject><subject>Spinal Fusion - instrumentation</subject><subject>Stainless Steel</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Titanium</subject><issn>0362-2436</issn><issn>1528-1159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EKqXwCUheIHYBPxN7WVW8pEpsYB05zrgYJU6x2wJ_j_ugs_BoZu5caw5CmJI7SnR1T3JUJWcF1ZrTXNBi-9ATNKaSqYJSqU_RmPCSFUzw8hxdpPSZJSWneoRGilVMCzVGdoobP_RgP0zw1nQYNqZbm5UfAh4c7s0iwMpbHCENwQQL2OeeD4vCDv0y65oO8LePuR-whbjZmaSlD4Cd_9kZXaIzZ7oEV4c8Qe-PD2-z52L--vQym84LK5RYFRYkA9O0VsrW8MaVQDWAFFZUTpdCcdEAc_kGQYgUbUWZbImzUgNxSkrNJ-h277uMw9ca0qrufbLQdSbAsE51VVKuSsWzUO2FNg4pRXD1Muaz4m9NSb3lW__zrY986x3fvHp9-GPd9NAeFw9A8_zmMDcpk3AxM_PpKOOV0lxz_gdHgIPU</recordid><startdate>19931015</startdate><enddate>19931015</enddate><creator>SCUDERI, G. J</creator><creator>GREENBERG, S. S</creator><creator>COHEN, D. S</creator><creator>LATTA, L. L</creator><creator>EISMONT, F. J</creator><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19931015</creationdate><title>A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation</title><author>SCUDERI, G. J ; GREENBERG, S. S ; COHEN, D. S ; LATTA, L. L ; EISMONT, F. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-ce52eabdc55da3bf6e19ee54c47f964834be2f00040054d7125d0fc59e0f85593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Bone Wires</topic><topic>Cattle</topic><topic>Cervical Vertebrae - surgery</topic><topic>Chromium Alloys</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical sciences</topic><topic>Orthopedic surgery</topic><topic>Spinal Fusion - instrumentation</topic><topic>Stainless Steel</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCUDERI, G. J</creatorcontrib><creatorcontrib>GREENBERG, S. S</creatorcontrib><creatorcontrib>COHEN, D. S</creatorcontrib><creatorcontrib>LATTA, L. L</creatorcontrib><creatorcontrib>EISMONT, F. J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Spine (Philadelphia, PA. 1976)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCUDERI, G. J</au><au>GREENBERG, S. S</au><au>COHEN, D. S</au><au>LATTA, L. L</au><au>EISMONT, F. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation</atitle><jtitle>Spine (Philadelphia, PA. 1976)</jtitle><addtitle>Spine (Phila Pa 1976)</addtitle><date>1993-10-15</date><risdate>1993</risdate><volume>18</volume><issue>14</issue><spage>1991</spage><epage>1994</epage><pages>1991-1994</pages><issn>0362-2436</issn><eissn>1528-1159</eissn><coden>SPINDD</coden><abstract>In a bovine cervical spine model, the ultimate and fatigue strengths as well as relative magnetic resonance imaging artifact produced by titanium, cobalt chrome, and stainless-steel wires in various gauges were assessed. Single-cycle and fatigue strength of wire constructs were measured. Although larger wires generally had greater static strength, fatigue strength was mixed. Sixteen-gauge titanium, and all stainless-steel models (22-gauge braided, 18-gauge, and Songer cable) withstood 10,000 cycles without failure, whereas all other constructs rarely could withstand a similar 10,000 cycles. Magnetic resonance imaging was performed on calf cervical spines instrumented with the various materials. Titanium exhibited the least artifact, stainless-steel showed the greatest artifact, and cobalt chrome an intermediate amount. Although titanium wire produces the least amount of magnetic resonance imaging artifact, it remains a poor choice for implant fixation because its notch sensitivity reduces its fatigue resistance compared with stainless steel, which remains the more dependable choice.</abstract><cop>Philadelphia, PA</cop><cop>Hagerstown, MD</cop><pub>Lippincott</pub><pmid>8272948</pmid><doi>10.1097/00007632-199310001-00011</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-2436
ispartof Spine (Philadelphia, PA. 1976), 1993-10, Vol.18 (14), p.1991-1994
issn 0362-2436
1528-1159
language eng
recordid cdi_proquest_miscellaneous_76138683
source MEDLINE; Journals@Ovid Complete
subjects Animals
Biological and medical sciences
Biomechanical Phenomena
Bone Wires
Cattle
Cervical Vertebrae - surgery
Chromium Alloys
Magnetic Resonance Imaging
Medical sciences
Orthopedic surgery
Spinal Fusion - instrumentation
Stainless Steel
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Titanium
title A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biomechanical%20evaluation%20of%20magnetic%20resonance%20imaging-compatible%20wire%20in%20cervical%20spine%20fixation&rft.jtitle=Spine%20(Philadelphia,%20PA.%201976)&rft.au=SCUDERI,%20G.%20J&rft.date=1993-10-15&rft.volume=18&rft.issue=14&rft.spage=1991&rft.epage=1994&rft.pages=1991-1994&rft.issn=0362-2436&rft.eissn=1528-1159&rft.coden=SPINDD&rft_id=info:doi/10.1097/00007632-199310001-00011&rft_dat=%3Cproquest_cross%3E76138683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76138683&rft_id=info:pmid/8272948&rfr_iscdi=true