Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity
In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its pre...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1993-12, Vol.268 (34), p.25425-25431 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25431 |
---|---|
container_issue | 34 |
container_start_page | 25425 |
container_title | The Journal of biological chemistry |
container_volume | 268 |
creator | Ziemienowicz, A Skowyra, D Zeilstra-Ryalls, J Fayet, O Georgopoulos, C Zylicz, M |
description | In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex. |
doi_str_mv | 10.1016/S0021-9258(19)74409-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76074316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819744093</els_id><sourcerecordid>16730497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-22ecfc73d238ef65f29760cbea98268c8e72269f36fcf39a2818b38127087a373</originalsourceid><addsrcrecordid>eNqFUcluFDEQtRAoDIFPiOQDQiClM1662_YJhWQIywgkAhI3y-Mu00bT7cb2BM338KN4FuUaH8pS1XuvlofQGSUXlNB2fksIo5VijXxN1RtR10RV_BGaUSJ5xRv68zGa3UOeomcp_Sbl1YqeoBOhCCuYGfr3LuQe5x7wItkeore9N9iGtce2NxPEMAJO25RhSOf4JobFcr6Lt9iMHb4ezed5CZ9KblqcY2tGHMHY7O9MBtyDyVUuiQwd_vblEk9hvR0gmgQX-No7BxHGjAcorUafhoRdiPthkhkA73V83j5HT5xZJ3hx_E_Rj_eL71cfquXXm49Xl8vK1q3IFWNgnRW8Y1yCaxvHlGiJXYFRkrXSShCMtcrx1lnHlWGSyhWXlAkiheGCn6JXB90phj8bSFkPPllYr80IYZN0URM1p-2DQNoKXg69U2wOQBtDShGcnqIfTNxqSvTORb13Ue8s0lTpvYuaF97ZscFmNUB3zzraVuovD_Xe_-r_-gh65UOxb9BlUc1rzZqaNQX29gCDcrU7D1En62G00BWKzboL_oFB_gNQkLh5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16730497</pqid></control><display><type>article</type><title>Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ziemienowicz, A ; Skowyra, D ; Zeilstra-Ryalls, J ; Fayet, O ; Georgopoulos, C ; Zylicz, M</creator><creatorcontrib>Ziemienowicz, A ; Skowyra, D ; Zeilstra-Ryalls, J ; Fayet, O ; Georgopoulos, C ; Zylicz, M</creatorcontrib><description>In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(19)74409-3</identifier><identifier>PMID: 7902351</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Proteins - isolation & purification ; Bacterial Proteins - metabolism ; Chaperonin 10 ; Chaperonin 60 ; Chromatography, Ion Exchange ; DNA-Directed RNA Polymerases - antagonists & inhibitors ; DNA-Directed RNA Polymerases - isolation & purification ; DNA-Directed RNA Polymerases - metabolism ; Enzyme Activation ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - metabolism ; Escherichia coli Proteins ; Heat-Shock Proteins - isolation & purification ; Heat-Shock Proteins - metabolism ; Hot Temperature ; HSP40 Heat-Shock Proteins ; HSP70 Heat-Shock Proteins ; Kinetics ; Protein Denaturation</subject><ispartof>The Journal of biological chemistry, 1993-12, Vol.268 (34), p.25425-25431</ispartof><rights>1993 © 1993 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-22ecfc73d238ef65f29760cbea98268c8e72269f36fcf39a2818b38127087a373</citedby><cites>FETCH-LOGICAL-c467t-22ecfc73d238ef65f29760cbea98268c8e72269f36fcf39a2818b38127087a373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7902351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziemienowicz, A</creatorcontrib><creatorcontrib>Skowyra, D</creatorcontrib><creatorcontrib>Zeilstra-Ryalls, J</creatorcontrib><creatorcontrib>Fayet, O</creatorcontrib><creatorcontrib>Georgopoulos, C</creatorcontrib><creatorcontrib>Zylicz, M</creatorcontrib><title>Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex.</description><subject>Bacterial Proteins - isolation & purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>Chaperonin 10</subject><subject>Chaperonin 60</subject><subject>Chromatography, Ion Exchange</subject><subject>DNA-Directed RNA Polymerases - antagonists & inhibitors</subject><subject>DNA-Directed RNA Polymerases - isolation & purification</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Enzyme Activation</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins</subject><subject>Heat-Shock Proteins - isolation & purification</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hot Temperature</subject><subject>HSP40 Heat-Shock Proteins</subject><subject>HSP70 Heat-Shock Proteins</subject><subject>Kinetics</subject><subject>Protein Denaturation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcluFDEQtRAoDIFPiOQDQiClM1662_YJhWQIywgkAhI3y-Mu00bT7cb2BM338KN4FuUaH8pS1XuvlofQGSUXlNB2fksIo5VijXxN1RtR10RV_BGaUSJ5xRv68zGa3UOeomcp_Sbl1YqeoBOhCCuYGfr3LuQe5x7wItkeore9N9iGtce2NxPEMAJO25RhSOf4JobFcr6Lt9iMHb4ezed5CZ9KblqcY2tGHMHY7O9MBtyDyVUuiQwd_vblEk9hvR0gmgQX-No7BxHGjAcorUafhoRdiPthkhkA73V83j5HT5xZJ3hx_E_Rj_eL71cfquXXm49Xl8vK1q3IFWNgnRW8Y1yCaxvHlGiJXYFRkrXSShCMtcrx1lnHlWGSyhWXlAkiheGCn6JXB90phj8bSFkPPllYr80IYZN0URM1p-2DQNoKXg69U2wOQBtDShGcnqIfTNxqSvTORb13Ue8s0lTpvYuaF97ZscFmNUB3zzraVuovD_Xe_-r_-gh65UOxb9BlUc1rzZqaNQX29gCDcrU7D1En62G00BWKzboL_oFB_gNQkLh5</recordid><startdate>19931205</startdate><enddate>19931205</enddate><creator>Ziemienowicz, A</creator><creator>Skowyra, D</creator><creator>Zeilstra-Ryalls, J</creator><creator>Fayet, O</creator><creator>Georgopoulos, C</creator><creator>Zylicz, M</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19931205</creationdate><title>Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity</title><author>Ziemienowicz, A ; Skowyra, D ; Zeilstra-Ryalls, J ; Fayet, O ; Georgopoulos, C ; Zylicz, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-22ecfc73d238ef65f29760cbea98268c8e72269f36fcf39a2818b38127087a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Bacterial Proteins - isolation & purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>Chaperonin 10</topic><topic>Chaperonin 60</topic><topic>Chromatography, Ion Exchange</topic><topic>DNA-Directed RNA Polymerases - antagonists & inhibitors</topic><topic>DNA-Directed RNA Polymerases - isolation & purification</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Enzyme Activation</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins</topic><topic>Heat-Shock Proteins - isolation & purification</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hot Temperature</topic><topic>HSP40 Heat-Shock Proteins</topic><topic>HSP70 Heat-Shock Proteins</topic><topic>Kinetics</topic><topic>Protein Denaturation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziemienowicz, A</creatorcontrib><creatorcontrib>Skowyra, D</creatorcontrib><creatorcontrib>Zeilstra-Ryalls, J</creatorcontrib><creatorcontrib>Fayet, O</creatorcontrib><creatorcontrib>Georgopoulos, C</creatorcontrib><creatorcontrib>Zylicz, M</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziemienowicz, A</au><au>Skowyra, D</au><au>Zeilstra-Ryalls, J</au><au>Fayet, O</au><au>Georgopoulos, C</au><au>Zylicz, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1993-12-05</date><risdate>1993</risdate><volume>268</volume><issue>34</issue><spage>25425</spage><epage>25431</epage><pages>25425-25431</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>7902351</pmid><doi>10.1016/S0021-9258(19)74409-3</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1993-12, Vol.268 (34), p.25425-25431 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_76074316 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Bacterial Proteins - isolation & purification Bacterial Proteins - metabolism Chaperonin 10 Chaperonin 60 Chromatography, Ion Exchange DNA-Directed RNA Polymerases - antagonists & inhibitors DNA-Directed RNA Polymerases - isolation & purification DNA-Directed RNA Polymerases - metabolism Enzyme Activation Escherichia coli Escherichia coli - enzymology Escherichia coli - metabolism Escherichia coli Proteins Heat-Shock Proteins - isolation & purification Heat-Shock Proteins - metabolism Hot Temperature HSP40 Heat-Shock Proteins HSP70 Heat-Shock Proteins Kinetics Protein Denaturation |
title | Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Both%20the%20Escherichia%20coli%20chaperone%20systems,%20GroEL/GroES%20and%20DnaK/DnaJ/GrpE,%20can%20reactivate%20heat-treated%20RNA%20polymerase.%20Different%20mechanisms%20for%20the%20same%20activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ziemienowicz,%20A&rft.date=1993-12-05&rft.volume=268&rft.issue=34&rft.spage=25425&rft.epage=25431&rft.pages=25425-25431&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/S0021-9258(19)74409-3&rft_dat=%3Cproquest_cross%3E16730497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16730497&rft_id=info:pmid/7902351&rft_els_id=S0021925819744093&rfr_iscdi=true |