Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity

In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1993-12, Vol.268 (34), p.25425-25431
Hauptverfasser: Ziemienowicz, A, Skowyra, D, Zeilstra-Ryalls, J, Fayet, O, Georgopoulos, C, Zylicz, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25431
container_issue 34
container_start_page 25425
container_title The Journal of biological chemistry
container_volume 268
creator Ziemienowicz, A
Skowyra, D
Zeilstra-Ryalls, J
Fayet, O
Georgopoulos, C
Zylicz, M
description In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex.
doi_str_mv 10.1016/S0021-9258(19)74409-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76074316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819744093</els_id><sourcerecordid>16730497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-22ecfc73d238ef65f29760cbea98268c8e72269f36fcf39a2818b38127087a373</originalsourceid><addsrcrecordid>eNqFUcluFDEQtRAoDIFPiOQDQiClM1662_YJhWQIywgkAhI3y-Mu00bT7cb2BM338KN4FuUaH8pS1XuvlofQGSUXlNB2fksIo5VijXxN1RtR10RV_BGaUSJ5xRv68zGa3UOeomcp_Sbl1YqeoBOhCCuYGfr3LuQe5x7wItkeore9N9iGtce2NxPEMAJO25RhSOf4JobFcr6Lt9iMHb4ezed5CZ9KblqcY2tGHMHY7O9MBtyDyVUuiQwd_vblEk9hvR0gmgQX-No7BxHGjAcorUafhoRdiPthkhkA73V83j5HT5xZJ3hx_E_Rj_eL71cfquXXm49Xl8vK1q3IFWNgnRW8Y1yCaxvHlGiJXYFRkrXSShCMtcrx1lnHlWGSyhWXlAkiheGCn6JXB90phj8bSFkPPllYr80IYZN0URM1p-2DQNoKXg69U2wOQBtDShGcnqIfTNxqSvTORb13Ue8s0lTpvYuaF97ZscFmNUB3zzraVuovD_Xe_-r_-gh65UOxb9BlUc1rzZqaNQX29gCDcrU7D1En62G00BWKzboL_oFB_gNQkLh5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16730497</pqid></control><display><type>article</type><title>Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ziemienowicz, A ; Skowyra, D ; Zeilstra-Ryalls, J ; Fayet, O ; Georgopoulos, C ; Zylicz, M</creator><creatorcontrib>Ziemienowicz, A ; Skowyra, D ; Zeilstra-Ryalls, J ; Fayet, O ; Georgopoulos, C ; Zylicz, M</creatorcontrib><description>In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(19)74409-3</identifier><identifier>PMID: 7902351</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Proteins - isolation &amp; purification ; Bacterial Proteins - metabolism ; Chaperonin 10 ; Chaperonin 60 ; Chromatography, Ion Exchange ; DNA-Directed RNA Polymerases - antagonists &amp; inhibitors ; DNA-Directed RNA Polymerases - isolation &amp; purification ; DNA-Directed RNA Polymerases - metabolism ; Enzyme Activation ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - metabolism ; Escherichia coli Proteins ; Heat-Shock Proteins - isolation &amp; purification ; Heat-Shock Proteins - metabolism ; Hot Temperature ; HSP40 Heat-Shock Proteins ; HSP70 Heat-Shock Proteins ; Kinetics ; Protein Denaturation</subject><ispartof>The Journal of biological chemistry, 1993-12, Vol.268 (34), p.25425-25431</ispartof><rights>1993 © 1993 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-22ecfc73d238ef65f29760cbea98268c8e72269f36fcf39a2818b38127087a373</citedby><cites>FETCH-LOGICAL-c467t-22ecfc73d238ef65f29760cbea98268c8e72269f36fcf39a2818b38127087a373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7902351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziemienowicz, A</creatorcontrib><creatorcontrib>Skowyra, D</creatorcontrib><creatorcontrib>Zeilstra-Ryalls, J</creatorcontrib><creatorcontrib>Fayet, O</creatorcontrib><creatorcontrib>Georgopoulos, C</creatorcontrib><creatorcontrib>Zylicz, M</creatorcontrib><title>Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex.</description><subject>Bacterial Proteins - isolation &amp; purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>Chaperonin 10</subject><subject>Chaperonin 60</subject><subject>Chromatography, Ion Exchange</subject><subject>DNA-Directed RNA Polymerases - antagonists &amp; inhibitors</subject><subject>DNA-Directed RNA Polymerases - isolation &amp; purification</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Enzyme Activation</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins</subject><subject>Heat-Shock Proteins - isolation &amp; purification</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hot Temperature</subject><subject>HSP40 Heat-Shock Proteins</subject><subject>HSP70 Heat-Shock Proteins</subject><subject>Kinetics</subject><subject>Protein Denaturation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcluFDEQtRAoDIFPiOQDQiClM1662_YJhWQIywgkAhI3y-Mu00bT7cb2BM338KN4FuUaH8pS1XuvlofQGSUXlNB2fksIo5VijXxN1RtR10RV_BGaUSJ5xRv68zGa3UOeomcp_Sbl1YqeoBOhCCuYGfr3LuQe5x7wItkeore9N9iGtce2NxPEMAJO25RhSOf4JobFcr6Lt9iMHb4ezed5CZ9KblqcY2tGHMHY7O9MBtyDyVUuiQwd_vblEk9hvR0gmgQX-No7BxHGjAcorUafhoRdiPthkhkA73V83j5HT5xZJ3hx_E_Rj_eL71cfquXXm49Xl8vK1q3IFWNgnRW8Y1yCaxvHlGiJXYFRkrXSShCMtcrx1lnHlWGSyhWXlAkiheGCn6JXB90phj8bSFkPPllYr80IYZN0URM1p-2DQNoKXg69U2wOQBtDShGcnqIfTNxqSvTORb13Ue8s0lTpvYuaF97ZscFmNUB3zzraVuovD_Xe_-r_-gh65UOxb9BlUc1rzZqaNQX29gCDcrU7D1En62G00BWKzboL_oFB_gNQkLh5</recordid><startdate>19931205</startdate><enddate>19931205</enddate><creator>Ziemienowicz, A</creator><creator>Skowyra, D</creator><creator>Zeilstra-Ryalls, J</creator><creator>Fayet, O</creator><creator>Georgopoulos, C</creator><creator>Zylicz, M</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19931205</creationdate><title>Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity</title><author>Ziemienowicz, A ; Skowyra, D ; Zeilstra-Ryalls, J ; Fayet, O ; Georgopoulos, C ; Zylicz, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-22ecfc73d238ef65f29760cbea98268c8e72269f36fcf39a2818b38127087a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Bacterial Proteins - isolation &amp; purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>Chaperonin 10</topic><topic>Chaperonin 60</topic><topic>Chromatography, Ion Exchange</topic><topic>DNA-Directed RNA Polymerases - antagonists &amp; inhibitors</topic><topic>DNA-Directed RNA Polymerases - isolation &amp; purification</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Enzyme Activation</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins</topic><topic>Heat-Shock Proteins - isolation &amp; purification</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hot Temperature</topic><topic>HSP40 Heat-Shock Proteins</topic><topic>HSP70 Heat-Shock Proteins</topic><topic>Kinetics</topic><topic>Protein Denaturation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziemienowicz, A</creatorcontrib><creatorcontrib>Skowyra, D</creatorcontrib><creatorcontrib>Zeilstra-Ryalls, J</creatorcontrib><creatorcontrib>Fayet, O</creatorcontrib><creatorcontrib>Georgopoulos, C</creatorcontrib><creatorcontrib>Zylicz, M</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziemienowicz, A</au><au>Skowyra, D</au><au>Zeilstra-Ryalls, J</au><au>Fayet, O</au><au>Georgopoulos, C</au><au>Zylicz, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1993-12-05</date><risdate>1993</risdate><volume>268</volume><issue>34</issue><spage>25425</spage><epage>25431</epage><pages>25425-25431</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>7902351</pmid><doi>10.1016/S0021-9258(19)74409-3</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1993-12, Vol.268 (34), p.25425-25431
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_76074316
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Bacterial Proteins - isolation & purification
Bacterial Proteins - metabolism
Chaperonin 10
Chaperonin 60
Chromatography, Ion Exchange
DNA-Directed RNA Polymerases - antagonists & inhibitors
DNA-Directed RNA Polymerases - isolation & purification
DNA-Directed RNA Polymerases - metabolism
Enzyme Activation
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - metabolism
Escherichia coli Proteins
Heat-Shock Proteins - isolation & purification
Heat-Shock Proteins - metabolism
Hot Temperature
HSP40 Heat-Shock Proteins
HSP70 Heat-Shock Proteins
Kinetics
Protein Denaturation
title Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Both%20the%20Escherichia%20coli%20chaperone%20systems,%20GroEL/GroES%20and%20DnaK/DnaJ/GrpE,%20can%20reactivate%20heat-treated%20RNA%20polymerase.%20Different%20mechanisms%20for%20the%20same%20activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ziemienowicz,%20A&rft.date=1993-12-05&rft.volume=268&rft.issue=34&rft.spage=25425&rft.epage=25431&rft.pages=25425-25431&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/S0021-9258(19)74409-3&rft_dat=%3Cproquest_cross%3E16730497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16730497&rft_id=info:pmid/7902351&rft_els_id=S0021925819744093&rfr_iscdi=true