Efficient monte carlo method for simulation of fluctuating conformations of native proteins

A powerful Monte Carlo method is described to simulate thermal conformational fluctuations in native proteins by using an empirical conformational energy function in which bond lengths and bond angles are kept fixed and only dihedral angles are independent variables. In this method, collective varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biopolymers 1985-03, Vol.24 (3), p.527-546
Hauptverfasser: Noguti, Tosiyuki, Gō, Noguhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 3
container_start_page 527
container_title Biopolymers
container_volume 24
creator Noguti, Tosiyuki
Gō, Noguhiro
description A powerful Monte Carlo method is described to simulate thermal conformational fluctuations in native proteins by using an empirical conformational energy function in which bond lengths and bond angles are kept fixed and only dihedral angles are independent variables. In this method, collective variables corresponding to eigenvectors of the second‐derivative matrix of the energy function at its minimum point are scaled according to corresponding eigenvalues in such a way that the energy function in terms of the scaled collective variables is isotropic at the minimum point. Simulation is carried out with an isotropic step size in the space of these scaled collective variables. This simulation method is applied to a small protein, bovine pancreatic trypsin inhibitor (BPTI), and its model harmonic system defined by a quadratic energy function with the same second‐derivative matrix as that of BPTI at its minimum point. Efficiency of the simulation method with an isotropic step size in the space of the scaled collective variables is found to be about 500–50 times greater than the conventional method with with an isotropic step in the space of the usual nonscaled variables. One step of this new method generates conformational changes that occur in the real‐time range of 0.05 ps. In a record of 5 × 105 step simulation, the BPTI molecule is observed to migrate beyond a single minimum‐energy region.
doi_str_mv 10.1002/bip.360240308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76065158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76065158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4698-56c148f7a3e161b98cee85f584fb7662f7858b947551cea0db672acf81ab06383</originalsourceid><addsrcrecordid>eNp9kM1v1DAQxS0EKkvhyBHJB8QtZRx_5ghVKUVVAQnEgYPleMdgSOzFToD-92TZaMWJ08zo_Wbe6BHymMEZA2if93F3xhW0AjiYO2TDoNMNtKa9SzYAoBouW3mfPKj1G4AQnMEJOeGdUW0nN-TzRQjRR0wTHXOakHpXhkxHnL7mLQ250BrHeXBTzInmQMMw-2lexvSF-pwWYPyr1b2YlvYn0l3JE8ZUH5J7wQ0VH631lHx8dfHh_HVz_fby6vzFdeOF6kwjlWfCBO04MsX6znhEI4M0IvRaqTZoI03fCS0l8-hg2yvdOh8Mcz0obvgpeXa4uxj_mLFOdozV4zC4hHmuVitQksk92BxAX3KtBYPdlTi6cmsZ2H2YdgnTHsNc-Cfr4bkfcXuk1_QW_emqu-rdEIpLPtYjZqQwIPaYPmC_4oC3__e0L6_e_fvA-nCsE_4-brry3SrNtbSfbi6tgffMaHhjb_gfNteceg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76065158</pqid></control><display><type>article</type><title>Efficient monte carlo method for simulation of fluctuating conformations of native proteins</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Noguti, Tosiyuki ; Gō, Noguhiro</creator><creatorcontrib>Noguti, Tosiyuki ; Gō, Noguhiro</creatorcontrib><description>A powerful Monte Carlo method is described to simulate thermal conformational fluctuations in native proteins by using an empirical conformational energy function in which bond lengths and bond angles are kept fixed and only dihedral angles are independent variables. In this method, collective variables corresponding to eigenvectors of the second‐derivative matrix of the energy function at its minimum point are scaled according to corresponding eigenvalues in such a way that the energy function in terms of the scaled collective variables is isotropic at the minimum point. Simulation is carried out with an isotropic step size in the space of these scaled collective variables. This simulation method is applied to a small protein, bovine pancreatic trypsin inhibitor (BPTI), and its model harmonic system defined by a quadratic energy function with the same second‐derivative matrix as that of BPTI at its minimum point. Efficiency of the simulation method with an isotropic step size in the space of the scaled collective variables is found to be about 500–50 times greater than the conventional method with with an isotropic step in the space of the usual nonscaled variables. One step of this new method generates conformational changes that occur in the real‐time range of 0.05 ps. In a record of 5 × 105 step simulation, the BPTI molecule is observed to migrate beyond a single minimum‐energy region.</description><identifier>ISSN: 0006-3525</identifier><identifier>EISSN: 1097-0282</identifier><identifier>DOI: 10.1002/bip.360240308</identifier><identifier>PMID: 3986295</identifier><identifier>CODEN: BIPMAA</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; Cattle ; Conformational dynamics in molecular biology ; Fundamental and applied biological sciences. Psychology ; Mathematics ; Models, Biological ; Molecular biophysics ; Monte Carlo Method ; Protein Conformation ; Proteins ; Trypsin Inhibitor, Kazal Pancreatic</subject><ispartof>Biopolymers, 1985-03, Vol.24 (3), p.527-546</ispartof><rights>Copyright © 1985 John Wiley &amp; Sons, Inc.</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4698-56c148f7a3e161b98cee85f584fb7662f7858b947551cea0db672acf81ab06383</citedby><cites>FETCH-LOGICAL-c4698-56c148f7a3e161b98cee85f584fb7662f7858b947551cea0db672acf81ab06383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbip.360240308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbip.360240308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8548045$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3986295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noguti, Tosiyuki</creatorcontrib><creatorcontrib>Gō, Noguhiro</creatorcontrib><title>Efficient monte carlo method for simulation of fluctuating conformations of native proteins</title><title>Biopolymers</title><addtitle>Biopolymers</addtitle><description>A powerful Monte Carlo method is described to simulate thermal conformational fluctuations in native proteins by using an empirical conformational energy function in which bond lengths and bond angles are kept fixed and only dihedral angles are independent variables. In this method, collective variables corresponding to eigenvectors of the second‐derivative matrix of the energy function at its minimum point are scaled according to corresponding eigenvalues in such a way that the energy function in terms of the scaled collective variables is isotropic at the minimum point. Simulation is carried out with an isotropic step size in the space of these scaled collective variables. This simulation method is applied to a small protein, bovine pancreatic trypsin inhibitor (BPTI), and its model harmonic system defined by a quadratic energy function with the same second‐derivative matrix as that of BPTI at its minimum point. Efficiency of the simulation method with an isotropic step size in the space of the scaled collective variables is found to be about 500–50 times greater than the conventional method with with an isotropic step in the space of the usual nonscaled variables. One step of this new method generates conformational changes that occur in the real‐time range of 0.05 ps. In a record of 5 × 105 step simulation, the BPTI molecule is observed to migrate beyond a single minimum‐energy region.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cattle</subject><subject>Conformational dynamics in molecular biology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Molecular biophysics</subject><subject>Monte Carlo Method</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Trypsin Inhibitor, Kazal Pancreatic</subject><issn>0006-3525</issn><issn>1097-0282</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1v1DAQxS0EKkvhyBHJB8QtZRx_5ghVKUVVAQnEgYPleMdgSOzFToD-92TZaMWJ08zo_Wbe6BHymMEZA2if93F3xhW0AjiYO2TDoNMNtKa9SzYAoBouW3mfPKj1G4AQnMEJOeGdUW0nN-TzRQjRR0wTHXOakHpXhkxHnL7mLQ250BrHeXBTzInmQMMw-2lexvSF-pwWYPyr1b2YlvYn0l3JE8ZUH5J7wQ0VH631lHx8dfHh_HVz_fby6vzFdeOF6kwjlWfCBO04MsX6znhEI4M0IvRaqTZoI03fCS0l8-hg2yvdOh8Mcz0obvgpeXa4uxj_mLFOdozV4zC4hHmuVitQksk92BxAX3KtBYPdlTi6cmsZ2H2YdgnTHsNc-Cfr4bkfcXuk1_QW_emqu-rdEIpLPtYjZqQwIPaYPmC_4oC3__e0L6_e_fvA-nCsE_4-brry3SrNtbSfbi6tgffMaHhjb_gfNteceg</recordid><startdate>198503</startdate><enddate>198503</enddate><creator>Noguti, Tosiyuki</creator><creator>Gō, Noguhiro</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198503</creationdate><title>Efficient monte carlo method for simulation of fluctuating conformations of native proteins</title><author>Noguti, Tosiyuki ; Gō, Noguhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4698-56c148f7a3e161b98cee85f584fb7662f7858b947551cea0db672acf81ab06383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cattle</topic><topic>Conformational dynamics in molecular biology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Molecular biophysics</topic><topic>Monte Carlo Method</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Trypsin Inhibitor, Kazal Pancreatic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noguti, Tosiyuki</creatorcontrib><creatorcontrib>Gō, Noguhiro</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biopolymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noguti, Tosiyuki</au><au>Gō, Noguhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient monte carlo method for simulation of fluctuating conformations of native proteins</atitle><jtitle>Biopolymers</jtitle><addtitle>Biopolymers</addtitle><date>1985-03</date><risdate>1985</risdate><volume>24</volume><issue>3</issue><spage>527</spage><epage>546</epage><pages>527-546</pages><issn>0006-3525</issn><eissn>1097-0282</eissn><coden>BIPMAA</coden><abstract>A powerful Monte Carlo method is described to simulate thermal conformational fluctuations in native proteins by using an empirical conformational energy function in which bond lengths and bond angles are kept fixed and only dihedral angles are independent variables. In this method, collective variables corresponding to eigenvectors of the second‐derivative matrix of the energy function at its minimum point are scaled according to corresponding eigenvalues in such a way that the energy function in terms of the scaled collective variables is isotropic at the minimum point. Simulation is carried out with an isotropic step size in the space of these scaled collective variables. This simulation method is applied to a small protein, bovine pancreatic trypsin inhibitor (BPTI), and its model harmonic system defined by a quadratic energy function with the same second‐derivative matrix as that of BPTI at its minimum point. Efficiency of the simulation method with an isotropic step size in the space of the scaled collective variables is found to be about 500–50 times greater than the conventional method with with an isotropic step in the space of the usual nonscaled variables. One step of this new method generates conformational changes that occur in the real‐time range of 0.05 ps. In a record of 5 × 105 step simulation, the BPTI molecule is observed to migrate beyond a single minimum‐energy region.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>3986295</pmid><doi>10.1002/bip.360240308</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3525
ispartof Biopolymers, 1985-03, Vol.24 (3), p.527-546
issn 0006-3525
1097-0282
language eng
recordid cdi_proquest_miscellaneous_76065158
source MEDLINE; Access via Wiley Online Library
subjects Animals
Biological and medical sciences
Cattle
Conformational dynamics in molecular biology
Fundamental and applied biological sciences. Psychology
Mathematics
Models, Biological
Molecular biophysics
Monte Carlo Method
Protein Conformation
Proteins
Trypsin Inhibitor, Kazal Pancreatic
title Efficient monte carlo method for simulation of fluctuating conformations of native proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20monte%20carlo%20method%20for%20simulation%20of%20fluctuating%20conformations%20of%20native%20proteins&rft.jtitle=Biopolymers&rft.au=Noguti,%20Tosiyuki&rft.date=1985-03&rft.volume=24&rft.issue=3&rft.spage=527&rft.epage=546&rft.pages=527-546&rft.issn=0006-3525&rft.eissn=1097-0282&rft.coden=BIPMAA&rft_id=info:doi/10.1002/bip.360240308&rft_dat=%3Cproquest_cross%3E76065158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76065158&rft_id=info:pmid/3986295&rfr_iscdi=true