Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions

The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1993-11, Vol.32 (43), p.11638-11645
Hauptverfasser: Choi, Wonjae E., Brader, Mark L., Aguilar, Valentin, Kaarsholm, Niels C., Dunn, Michael F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11645
container_issue 43
container_start_page 11638
container_title Biochemistry (Easton)
container_volume 32
creator Choi, Wonjae E.
Brader, Mark L.
Aguilar, Valentin
Kaarsholm, Niels C.
Dunn, Michael F.
description The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the ligand-induced T- to R-state allosteric transition of the insulin hexamer. Recent studies have established that there are two ligand binding processes which stabilize the R-state conformation of the Co(II)-substituted hexamer: the binding of cyclic organic molecules to the six protein pockets present in the Zn(II)-R6 insulin hexamer [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., & Swensen, D. (1989) Nature 338, 594-596] and the coordination of singly charged anions to the His(B10) metal sites [Brader, M.L., Kaarsholm, N.C., Lee, W.K., & Dunn, M.F. (1991) Biochemistry 30, 6636-6645]. The R6 insulin hexamer is stabilized by heterotropic interactions between the hydrophobic protein pockets and the coordination sites of the His(B10)-bound metal ions. The binding studies with 4-hydroxybenzamide, m-cresol, resorcinol, and phenol presented herein show that, in the absence of inorganic anions, the 4-hydroxybenzamide-induced transition, with a Hill number of 2.8, is the most cooperative, followed by m-cresol, phenol, and resorcinol with Hill numbers of 1.8, 1.4, and 1.2, respectively. The relative effectiveness of these ligands in shifting the allosteric equilibrium in favor of the Co(II)-R6 hexamer was found to be resorcinol > phenol > 4-hydroxybenzamide > m-cresol.
doi_str_mv 10.1021/bi00094a021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76026045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76026045</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-591cd94359693d7d0cb3310df953495236bfe4902f983b53f32f466986abda8c3</originalsourceid><addsrcrecordid>eNptkEtP3DAURq0KRAfoqutKXqCyQCl-J16ORuUlJFpKy9Jy_NCYJvFgJxL8-3o0w6gLVva99_i71gHgM0bfMCL4vA0IIcl0uX8AM8wJqpiUfA_MSl9URAr0ERzm_FRKhmp2AA4aghtC8Qy4edfFPLoUDByTHnIYQxxg9HBcOhiGPHVhgEv3onuXYMiwj3bq9OgsbF_hMvZxTHFVHuvBFqwEvTXCUApt1nH5GOx73WX3aXsegd8X3x8WV9Xt3eX1Yn5badrQseISGysZ5VJIamuLTEspRtZLTpnkhIrWOyYR8bKhLaeeEs-EkI3QrdWNoUfg6yZ3leLz5PKo-pCN6zo9uDhlVQtEBGK8gGcb0KSYc3JerVLodXpVGKm1VPWf1EJ_2cZObe_sjt1aLPOT7VxnoztfPJqQdxhtGEdivbTaYKEIf9mNdfqrRE1rrh5-_FKPf24e7xf3XP0s_OmG1yarpzilobh794P_AMAZm0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76026045</pqid></control><display><type>article</type><title>Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions</title><source>MEDLINE</source><source>American Chemical Society (ACS) Journals</source><creator>Choi, Wonjae E. ; Brader, Mark L. ; Aguilar, Valentin ; Kaarsholm, Niels C. ; Dunn, Michael F.</creator><creatorcontrib>Choi, Wonjae E. ; Brader, Mark L. ; Aguilar, Valentin ; Kaarsholm, Niels C. ; Dunn, Michael F.</creatorcontrib><description>The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the ligand-induced T- to R-state allosteric transition of the insulin hexamer. Recent studies have established that there are two ligand binding processes which stabilize the R-state conformation of the Co(II)-substituted hexamer: the binding of cyclic organic molecules to the six protein pockets present in the Zn(II)-R6 insulin hexamer [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., &amp; Swensen, D. (1989) Nature 338, 594-596] and the coordination of singly charged anions to the His(B10) metal sites [Brader, M.L., Kaarsholm, N.C., Lee, W.K., &amp; Dunn, M.F. (1991) Biochemistry 30, 6636-6645]. The R6 insulin hexamer is stabilized by heterotropic interactions between the hydrophobic protein pockets and the coordination sites of the His(B10)-bound metal ions. The binding studies with 4-hydroxybenzamide, m-cresol, resorcinol, and phenol presented herein show that, in the absence of inorganic anions, the 4-hydroxybenzamide-induced transition, with a Hill number of 2.8, is the most cooperative, followed by m-cresol, phenol, and resorcinol with Hill numbers of 1.8, 1.4, and 1.2, respectively. The relative effectiveness of these ligands in shifting the allosteric equilibrium in favor of the Co(II)-R6 hexamer was found to be resorcinol &gt; phenol &gt; 4-hydroxybenzamide &gt; m-cresol.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi00094a021</identifier><identifier>PMID: 8218231</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Allosteric Regulation ; Biological and medical sciences ; Biopolymers ; Cobalt ; Fundamental and applied biological sciences. Psychology ; Humans ; Insulin - chemistry ; Insulin - metabolism ; Interactions. Associations ; Intermolecular phenomena ; Ligands ; Models, Chemical ; Molecular biophysics ; Protein Conformation</subject><ispartof>Biochemistry (Easton), 1993-11, Vol.32 (43), p.11638-11645</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-591cd94359693d7d0cb3310df953495236bfe4902f983b53f32f466986abda8c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi00094a021$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi00094a021$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3845065$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8218231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Wonjae E.</creatorcontrib><creatorcontrib>Brader, Mark L.</creatorcontrib><creatorcontrib>Aguilar, Valentin</creatorcontrib><creatorcontrib>Kaarsholm, Niels C.</creatorcontrib><creatorcontrib>Dunn, Michael F.</creatorcontrib><title>Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the ligand-induced T- to R-state allosteric transition of the insulin hexamer. Recent studies have established that there are two ligand binding processes which stabilize the R-state conformation of the Co(II)-substituted hexamer: the binding of cyclic organic molecules to the six protein pockets present in the Zn(II)-R6 insulin hexamer [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., &amp; Swensen, D. (1989) Nature 338, 594-596] and the coordination of singly charged anions to the His(B10) metal sites [Brader, M.L., Kaarsholm, N.C., Lee, W.K., &amp; Dunn, M.F. (1991) Biochemistry 30, 6636-6645]. The R6 insulin hexamer is stabilized by heterotropic interactions between the hydrophobic protein pockets and the coordination sites of the His(B10)-bound metal ions. The binding studies with 4-hydroxybenzamide, m-cresol, resorcinol, and phenol presented herein show that, in the absence of inorganic anions, the 4-hydroxybenzamide-induced transition, with a Hill number of 2.8, is the most cooperative, followed by m-cresol, phenol, and resorcinol with Hill numbers of 1.8, 1.4, and 1.2, respectively. The relative effectiveness of these ligands in shifting the allosteric equilibrium in favor of the Co(II)-R6 hexamer was found to be resorcinol &gt; phenol &gt; 4-hydroxybenzamide &gt; m-cresol.</description><subject>Allosteric Regulation</subject><subject>Biological and medical sciences</subject><subject>Biopolymers</subject><subject>Cobalt</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>Ligands</subject><subject>Models, Chemical</subject><subject>Molecular biophysics</subject><subject>Protein Conformation</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEtP3DAURq0KRAfoqutKXqCyQCl-J16ORuUlJFpKy9Jy_NCYJvFgJxL8-3o0w6gLVva99_i71gHgM0bfMCL4vA0IIcl0uX8AM8wJqpiUfA_MSl9URAr0ERzm_FRKhmp2AA4aghtC8Qy4edfFPLoUDByTHnIYQxxg9HBcOhiGPHVhgEv3onuXYMiwj3bq9OgsbF_hMvZxTHFVHuvBFqwEvTXCUApt1nH5GOx73WX3aXsegd8X3x8WV9Xt3eX1Yn5badrQseISGysZ5VJIamuLTEspRtZLTpnkhIrWOyYR8bKhLaeeEs-EkI3QrdWNoUfg6yZ3leLz5PKo-pCN6zo9uDhlVQtEBGK8gGcb0KSYc3JerVLodXpVGKm1VPWf1EJ_2cZObe_sjt1aLPOT7VxnoztfPJqQdxhtGEdivbTaYKEIf9mNdfqrRE1rrh5-_FKPf24e7xf3XP0s_OmG1yarpzilobh794P_AMAZm0U</recordid><startdate>19931102</startdate><enddate>19931102</enddate><creator>Choi, Wonjae E.</creator><creator>Brader, Mark L.</creator><creator>Aguilar, Valentin</creator><creator>Kaarsholm, Niels C.</creator><creator>Dunn, Michael F.</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19931102</creationdate><title>Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions</title><author>Choi, Wonjae E. ; Brader, Mark L. ; Aguilar, Valentin ; Kaarsholm, Niels C. ; Dunn, Michael F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-591cd94359693d7d0cb3310df953495236bfe4902f983b53f32f466986abda8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Allosteric Regulation</topic><topic>Biological and medical sciences</topic><topic>Biopolymers</topic><topic>Cobalt</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>Ligands</topic><topic>Models, Chemical</topic><topic>Molecular biophysics</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Wonjae E.</creatorcontrib><creatorcontrib>Brader, Mark L.</creatorcontrib><creatorcontrib>Aguilar, Valentin</creatorcontrib><creatorcontrib>Kaarsholm, Niels C.</creatorcontrib><creatorcontrib>Dunn, Michael F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Wonjae E.</au><au>Brader, Mark L.</au><au>Aguilar, Valentin</au><au>Kaarsholm, Niels C.</au><au>Dunn, Michael F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1993-11-02</date><risdate>1993</risdate><volume>32</volume><issue>43</issue><spage>11638</spage><epage>11645</epage><pages>11638-11645</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the ligand-induced T- to R-state allosteric transition of the insulin hexamer. Recent studies have established that there are two ligand binding processes which stabilize the R-state conformation of the Co(II)-substituted hexamer: the binding of cyclic organic molecules to the six protein pockets present in the Zn(II)-R6 insulin hexamer [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., &amp; Swensen, D. (1989) Nature 338, 594-596] and the coordination of singly charged anions to the His(B10) metal sites [Brader, M.L., Kaarsholm, N.C., Lee, W.K., &amp; Dunn, M.F. (1991) Biochemistry 30, 6636-6645]. The R6 insulin hexamer is stabilized by heterotropic interactions between the hydrophobic protein pockets and the coordination sites of the His(B10)-bound metal ions. The binding studies with 4-hydroxybenzamide, m-cresol, resorcinol, and phenol presented herein show that, in the absence of inorganic anions, the 4-hydroxybenzamide-induced transition, with a Hill number of 2.8, is the most cooperative, followed by m-cresol, phenol, and resorcinol with Hill numbers of 1.8, 1.4, and 1.2, respectively. The relative effectiveness of these ligands in shifting the allosteric equilibrium in favor of the Co(II)-R6 hexamer was found to be resorcinol &gt; phenol &gt; 4-hydroxybenzamide &gt; m-cresol.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>8218231</pmid><doi>10.1021/bi00094a021</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1993-11, Vol.32 (43), p.11638-11645
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_76026045
source MEDLINE; American Chemical Society (ACS) Journals
subjects Allosteric Regulation
Biological and medical sciences
Biopolymers
Cobalt
Fundamental and applied biological sciences. Psychology
Humans
Insulin - chemistry
Insulin - metabolism
Interactions. Associations
Intermolecular phenomena
Ligands
Models, Chemical
Molecular biophysics
Protein Conformation
title Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allosteric%20transition%20of%20the%20insulin%20hexamer%20is%20modulated%20by%20homotropic%20and%20heterotropic%20interactions&rft.jtitle=Biochemistry%20(Easton)&rft.au=Choi,%20Wonjae%20E.&rft.date=1993-11-02&rft.volume=32&rft.issue=43&rft.spage=11638&rft.epage=11645&rft.pages=11638-11645&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi00094a021&rft_dat=%3Cproquest_cross%3E76026045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76026045&rft_id=info:pmid/8218231&rfr_iscdi=true