Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions
The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the l...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1993-11, Vol.32 (43), p.11638-11645 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11645 |
---|---|
container_issue | 43 |
container_start_page | 11638 |
container_title | Biochemistry (Easton) |
container_volume | 32 |
creator | Choi, Wonjae E. Brader, Mark L. Aguilar, Valentin Kaarsholm, Niels C. Dunn, Michael F. |
description | The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the ligand-induced T- to R-state allosteric transition of the insulin hexamer. Recent studies have established that there are two ligand binding processes which stabilize the R-state conformation of the Co(II)-substituted hexamer: the binding of cyclic organic molecules to the six protein pockets present in the Zn(II)-R6 insulin hexamer [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., & Swensen, D. (1989) Nature 338, 594-596] and the coordination of singly charged anions to the His(B10) metal sites [Brader, M.L., Kaarsholm, N.C., Lee, W.K., & Dunn, M.F. (1991) Biochemistry 30, 6636-6645]. The R6 insulin hexamer is stabilized by heterotropic interactions between the hydrophobic protein pockets and the coordination sites of the His(B10)-bound metal ions. The binding studies with 4-hydroxybenzamide, m-cresol, resorcinol, and phenol presented herein show that, in the absence of inorganic anions, the 4-hydroxybenzamide-induced transition, with a Hill number of 2.8, is the most cooperative, followed by m-cresol, phenol, and resorcinol with Hill numbers of 1.8, 1.4, and 1.2, respectively. The relative effectiveness of these ligands in shifting the allosteric equilibrium in favor of the Co(II)-R6 hexamer was found to be resorcinol > phenol > 4-hydroxybenzamide > m-cresol. |
doi_str_mv | 10.1021/bi00094a021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76026045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76026045</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-591cd94359693d7d0cb3310df953495236bfe4902f983b53f32f466986abda8c3</originalsourceid><addsrcrecordid>eNptkEtP3DAURq0KRAfoqutKXqCyQCl-J16ORuUlJFpKy9Jy_NCYJvFgJxL8-3o0w6gLVva99_i71gHgM0bfMCL4vA0IIcl0uX8AM8wJqpiUfA_MSl9URAr0ERzm_FRKhmp2AA4aghtC8Qy4edfFPLoUDByTHnIYQxxg9HBcOhiGPHVhgEv3onuXYMiwj3bq9OgsbF_hMvZxTHFVHuvBFqwEvTXCUApt1nH5GOx73WX3aXsegd8X3x8WV9Xt3eX1Yn5badrQseISGysZ5VJIamuLTEspRtZLTpnkhIrWOyYR8bKhLaeeEs-EkI3QrdWNoUfg6yZ3leLz5PKo-pCN6zo9uDhlVQtEBGK8gGcb0KSYc3JerVLodXpVGKm1VPWf1EJ_2cZObe_sjt1aLPOT7VxnoztfPJqQdxhtGEdivbTaYKEIf9mNdfqrRE1rrh5-_FKPf24e7xf3XP0s_OmG1yarpzilobh794P_AMAZm0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76026045</pqid></control><display><type>article</type><title>Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions</title><source>MEDLINE</source><source>American Chemical Society (ACS) Journals</source><creator>Choi, Wonjae E. ; Brader, Mark L. ; Aguilar, Valentin ; Kaarsholm, Niels C. ; Dunn, Michael F.</creator><creatorcontrib>Choi, Wonjae E. ; Brader, Mark L. ; Aguilar, Valentin ; Kaarsholm, Niels C. ; Dunn, Michael F.</creatorcontrib><description>The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the ligand-induced T- to R-state allosteric transition of the insulin hexamer. Recent studies have established that there are two ligand binding processes which stabilize the R-state conformation of the Co(II)-substituted hexamer: the binding of cyclic organic molecules to the six protein pockets present in the Zn(II)-R6 insulin hexamer [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., & Swensen, D. (1989) Nature 338, 594-596] and the coordination of singly charged anions to the His(B10) metal sites [Brader, M.L., Kaarsholm, N.C., Lee, W.K., & Dunn, M.F. (1991) Biochemistry 30, 6636-6645]. The R6 insulin hexamer is stabilized by heterotropic interactions between the hydrophobic protein pockets and the coordination sites of the His(B10)-bound metal ions. The binding studies with 4-hydroxybenzamide, m-cresol, resorcinol, and phenol presented herein show that, in the absence of inorganic anions, the 4-hydroxybenzamide-induced transition, with a Hill number of 2.8, is the most cooperative, followed by m-cresol, phenol, and resorcinol with Hill numbers of 1.8, 1.4, and 1.2, respectively. The relative effectiveness of these ligands in shifting the allosteric equilibrium in favor of the Co(II)-R6 hexamer was found to be resorcinol > phenol > 4-hydroxybenzamide > m-cresol.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi00094a021</identifier><identifier>PMID: 8218231</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Allosteric Regulation ; Biological and medical sciences ; Biopolymers ; Cobalt ; Fundamental and applied biological sciences. Psychology ; Humans ; Insulin - chemistry ; Insulin - metabolism ; Interactions. Associations ; Intermolecular phenomena ; Ligands ; Models, Chemical ; Molecular biophysics ; Protein Conformation</subject><ispartof>Biochemistry (Easton), 1993-11, Vol.32 (43), p.11638-11645</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-591cd94359693d7d0cb3310df953495236bfe4902f983b53f32f466986abda8c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi00094a021$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi00094a021$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3845065$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8218231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Wonjae E.</creatorcontrib><creatorcontrib>Brader, Mark L.</creatorcontrib><creatorcontrib>Aguilar, Valentin</creatorcontrib><creatorcontrib>Kaarsholm, Niels C.</creatorcontrib><creatorcontrib>Dunn, Michael F.</creatorcontrib><title>Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the ligand-induced T- to R-state allosteric transition of the insulin hexamer. Recent studies have established that there are two ligand binding processes which stabilize the R-state conformation of the Co(II)-substituted hexamer: the binding of cyclic organic molecules to the six protein pockets present in the Zn(II)-R6 insulin hexamer [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., & Swensen, D. (1989) Nature 338, 594-596] and the coordination of singly charged anions to the His(B10) metal sites [Brader, M.L., Kaarsholm, N.C., Lee, W.K., & Dunn, M.F. (1991) Biochemistry 30, 6636-6645]. The R6 insulin hexamer is stabilized by heterotropic interactions between the hydrophobic protein pockets and the coordination sites of the His(B10)-bound metal ions. The binding studies with 4-hydroxybenzamide, m-cresol, resorcinol, and phenol presented herein show that, in the absence of inorganic anions, the 4-hydroxybenzamide-induced transition, with a Hill number of 2.8, is the most cooperative, followed by m-cresol, phenol, and resorcinol with Hill numbers of 1.8, 1.4, and 1.2, respectively. The relative effectiveness of these ligands in shifting the allosteric equilibrium in favor of the Co(II)-R6 hexamer was found to be resorcinol > phenol > 4-hydroxybenzamide > m-cresol.</description><subject>Allosteric Regulation</subject><subject>Biological and medical sciences</subject><subject>Biopolymers</subject><subject>Cobalt</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>Ligands</subject><subject>Models, Chemical</subject><subject>Molecular biophysics</subject><subject>Protein Conformation</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEtP3DAURq0KRAfoqutKXqCyQCl-J16ORuUlJFpKy9Jy_NCYJvFgJxL8-3o0w6gLVva99_i71gHgM0bfMCL4vA0IIcl0uX8AM8wJqpiUfA_MSl9URAr0ERzm_FRKhmp2AA4aghtC8Qy4edfFPLoUDByTHnIYQxxg9HBcOhiGPHVhgEv3onuXYMiwj3bq9OgsbF_hMvZxTHFVHuvBFqwEvTXCUApt1nH5GOx73WX3aXsegd8X3x8WV9Xt3eX1Yn5badrQseISGysZ5VJIamuLTEspRtZLTpnkhIrWOyYR8bKhLaeeEs-EkI3QrdWNoUfg6yZ3leLz5PKo-pCN6zo9uDhlVQtEBGK8gGcb0KSYc3JerVLodXpVGKm1VPWf1EJ_2cZObe_sjt1aLPOT7VxnoztfPJqQdxhtGEdivbTaYKEIf9mNdfqrRE1rrh5-_FKPf24e7xf3XP0s_OmG1yarpzilobh794P_AMAZm0U</recordid><startdate>19931102</startdate><enddate>19931102</enddate><creator>Choi, Wonjae E.</creator><creator>Brader, Mark L.</creator><creator>Aguilar, Valentin</creator><creator>Kaarsholm, Niels C.</creator><creator>Dunn, Michael F.</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19931102</creationdate><title>Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions</title><author>Choi, Wonjae E. ; Brader, Mark L. ; Aguilar, Valentin ; Kaarsholm, Niels C. ; Dunn, Michael F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-591cd94359693d7d0cb3310df953495236bfe4902f983b53f32f466986abda8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Allosteric Regulation</topic><topic>Biological and medical sciences</topic><topic>Biopolymers</topic><topic>Cobalt</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>Ligands</topic><topic>Models, Chemical</topic><topic>Molecular biophysics</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Wonjae E.</creatorcontrib><creatorcontrib>Brader, Mark L.</creatorcontrib><creatorcontrib>Aguilar, Valentin</creatorcontrib><creatorcontrib>Kaarsholm, Niels C.</creatorcontrib><creatorcontrib>Dunn, Michael F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Wonjae E.</au><au>Brader, Mark L.</au><au>Aguilar, Valentin</au><au>Kaarsholm, Niels C.</au><au>Dunn, Michael F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1993-11-02</date><risdate>1993</risdate><volume>32</volume><issue>43</issue><spage>11638</spage><epage>11645</epage><pages>11638-11645</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The allosteric behavior of the Co(II)-substituted insulin hexamer has been investigated using electronic spectroscopy to study the binding of different phenolic analogues and singly charged anions to effector sites on the protein. This work presents the first detailed, quantitative analysis of the ligand-induced T- to R-state allosteric transition of the insulin hexamer. Recent studies have established that there are two ligand binding processes which stabilize the R-state conformation of the Co(II)-substituted hexamer: the binding of cyclic organic molecules to the six protein pockets present in the Zn(II)-R6 insulin hexamer [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., & Swensen, D. (1989) Nature 338, 594-596] and the coordination of singly charged anions to the His(B10) metal sites [Brader, M.L., Kaarsholm, N.C., Lee, W.K., & Dunn, M.F. (1991) Biochemistry 30, 6636-6645]. The R6 insulin hexamer is stabilized by heterotropic interactions between the hydrophobic protein pockets and the coordination sites of the His(B10)-bound metal ions. The binding studies with 4-hydroxybenzamide, m-cresol, resorcinol, and phenol presented herein show that, in the absence of inorganic anions, the 4-hydroxybenzamide-induced transition, with a Hill number of 2.8, is the most cooperative, followed by m-cresol, phenol, and resorcinol with Hill numbers of 1.8, 1.4, and 1.2, respectively. The relative effectiveness of these ligands in shifting the allosteric equilibrium in favor of the Co(II)-R6 hexamer was found to be resorcinol > phenol > 4-hydroxybenzamide > m-cresol.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>8218231</pmid><doi>10.1021/bi00094a021</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 1993-11, Vol.32 (43), p.11638-11645 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_76026045 |
source | MEDLINE; American Chemical Society (ACS) Journals |
subjects | Allosteric Regulation Biological and medical sciences Biopolymers Cobalt Fundamental and applied biological sciences. Psychology Humans Insulin - chemistry Insulin - metabolism Interactions. Associations Intermolecular phenomena Ligands Models, Chemical Molecular biophysics Protein Conformation |
title | Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allosteric%20transition%20of%20the%20insulin%20hexamer%20is%20modulated%20by%20homotropic%20and%20heterotropic%20interactions&rft.jtitle=Biochemistry%20(Easton)&rft.au=Choi,%20Wonjae%20E.&rft.date=1993-11-02&rft.volume=32&rft.issue=43&rft.spage=11638&rft.epage=11645&rft.pages=11638-11645&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi00094a021&rft_dat=%3Cproquest_cross%3E76026045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76026045&rft_id=info:pmid/8218231&rfr_iscdi=true |