Tensor ranks for the inversion of tensor-product binomials

The main result reads: if a nonsingular matrix A of order n = p q is a tensor-product binomial with two factors then the tensor rank of A − 1 is bounded from above by min { p , q } . The estimate is sharp, and in the worst case it amounts to n .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2010-10, Vol.234 (11), p.3170-3174
1. Verfasser: Tyrtyshnikov, Eugene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3174
container_issue 11
container_start_page 3170
container_title Journal of computational and applied mathematics
container_volume 234
creator Tyrtyshnikov, Eugene
description The main result reads: if a nonsingular matrix A of order n = p q is a tensor-product binomial with two factors then the tensor rank of A − 1 is bounded from above by min { p , q } . The estimate is sharp, and in the worst case it amounts to n .
doi_str_mv 10.1016/j.cam.2010.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760210636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042710000774</els_id><sourcerecordid>760210636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-e5a4f1b3dfed17d111be87afd8af6da7325d26b40b0c85c260d3641ec0cca5163</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1xqnFTtukgxOa-JImcRnnKE0ckbE1I-km8e_JGGdOtqXnteyHsWuECgHF7aoyelNxyDPwCkCcsAl2clailN0pm0AtZQkNl-fsIqUVZGKGzYTdLWlIIRZRD5-pcLkbP6jww55i8mEogivGX6LcxmB3Zix6P4SN1-t0yc5cLnT1V6fs_elxOX8pF2_Pr_OHRWlqPhtLanXjsK-tI4vSImJPndTOdtoJq2XNW8tF30APpmsNF2Br0SAZMEa3KOopuznuzRd87SiNauOTofVaDxR2SUkBHEHUBxKPpIkhpUhObaPf6PitENRBk1qprEkdNCngKkvImftjhvILe09RJeNpMGR9JDMqG_w_6R-kVnBy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760210636</pqid></control><display><type>article</type><title>Tensor ranks for the inversion of tensor-product binomials</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tyrtyshnikov, Eugene</creator><creatorcontrib>Tyrtyshnikov, Eugene</creatorcontrib><description>The main result reads: if a nonsingular matrix A of order n = p q is a tensor-product binomial with two factors then the tensor rank of A − 1 is bounded from above by min { p , q } . The estimate is sharp, and in the worst case it amounts to n .</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2010.02.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Binomials ; Computation ; Estimates ; Inverse matrices ; Inversions ; Kronecker product ; Low-rank matrices ; Mathematical analysis ; Mathematical models ; Multilevel matrices ; Tensor ranks ; Tensors ; Toeplitz matrices</subject><ispartof>Journal of computational and applied mathematics, 2010-10, Vol.234 (11), p.3170-3174</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-e5a4f1b3dfed17d111be87afd8af6da7325d26b40b0c85c260d3641ec0cca5163</citedby><cites>FETCH-LOGICAL-c329t-e5a4f1b3dfed17d111be87afd8af6da7325d26b40b0c85c260d3641ec0cca5163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2010.02.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tyrtyshnikov, Eugene</creatorcontrib><title>Tensor ranks for the inversion of tensor-product binomials</title><title>Journal of computational and applied mathematics</title><description>The main result reads: if a nonsingular matrix A of order n = p q is a tensor-product binomial with two factors then the tensor rank of A − 1 is bounded from above by min { p , q } . The estimate is sharp, and in the worst case it amounts to n .</description><subject>Binomials</subject><subject>Computation</subject><subject>Estimates</subject><subject>Inverse matrices</subject><subject>Inversions</subject><subject>Kronecker product</subject><subject>Low-rank matrices</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multilevel matrices</subject><subject>Tensor ranks</subject><subject>Tensors</subject><subject>Toeplitz matrices</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1xqnFTtukgxOa-JImcRnnKE0ckbE1I-km8e_JGGdOtqXnteyHsWuECgHF7aoyelNxyDPwCkCcsAl2clailN0pm0AtZQkNl-fsIqUVZGKGzYTdLWlIIRZRD5-pcLkbP6jww55i8mEogivGX6LcxmB3Zix6P4SN1-t0yc5cLnT1V6fs_elxOX8pF2_Pr_OHRWlqPhtLanXjsK-tI4vSImJPndTOdtoJq2XNW8tF30APpmsNF2Br0SAZMEa3KOopuznuzRd87SiNauOTofVaDxR2SUkBHEHUBxKPpIkhpUhObaPf6PitENRBk1qprEkdNCngKkvImftjhvILe09RJeNpMGR9JDMqG_w_6R-kVnBy</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Tyrtyshnikov, Eugene</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101001</creationdate><title>Tensor ranks for the inversion of tensor-product binomials</title><author>Tyrtyshnikov, Eugene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-e5a4f1b3dfed17d111be87afd8af6da7325d26b40b0c85c260d3641ec0cca5163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Binomials</topic><topic>Computation</topic><topic>Estimates</topic><topic>Inverse matrices</topic><topic>Inversions</topic><topic>Kronecker product</topic><topic>Low-rank matrices</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multilevel matrices</topic><topic>Tensor ranks</topic><topic>Tensors</topic><topic>Toeplitz matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyrtyshnikov, Eugene</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyrtyshnikov, Eugene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor ranks for the inversion of tensor-product binomials</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>234</volume><issue>11</issue><spage>3170</spage><epage>3174</epage><pages>3170-3174</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>The main result reads: if a nonsingular matrix A of order n = p q is a tensor-product binomial with two factors then the tensor rank of A − 1 is bounded from above by min { p , q } . The estimate is sharp, and in the worst case it amounts to n .</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2010.02.006</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2010-10, Vol.234 (11), p.3170-3174
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_760210636
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Binomials
Computation
Estimates
Inverse matrices
Inversions
Kronecker product
Low-rank matrices
Mathematical analysis
Mathematical models
Multilevel matrices
Tensor ranks
Tensors
Toeplitz matrices
title Tensor ranks for the inversion of tensor-product binomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20ranks%20for%20the%20inversion%20of%20tensor-product%20binomials&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Tyrtyshnikov,%20Eugene&rft.date=2010-10-01&rft.volume=234&rft.issue=11&rft.spage=3170&rft.epage=3174&rft.pages=3170-3174&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2010.02.006&rft_dat=%3Cproquest_cross%3E760210636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760210636&rft_id=info:pmid/&rft_els_id=S0377042710000774&rfr_iscdi=true