Iterative method for solving a nonlinear fourth order boundary value problem

In the study of transverse vibrations of a hinged beam there arises a boundary value problem for fourth order ordinary differential equation, where a significant difficulty lies in a nonlinear term under integral sign. In recent years several authors considered finite approximation of the problem an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2010-07, Vol.60 (1), p.112-121
Hauptverfasser: Dang, Quang A., Luan, Vu Thai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 1
container_start_page 112
container_title Computers & mathematics with applications (1987)
container_volume 60
creator Dang, Quang A.
Luan, Vu Thai
description In the study of transverse vibrations of a hinged beam there arises a boundary value problem for fourth order ordinary differential equation, where a significant difficulty lies in a nonlinear term under integral sign. In recent years several authors considered finite approximation of the problem and proposed an iterative method for solving the system of nonlinear equations obtained. The essence of the iteration is the simple iteration method for a nonlinear equation, although this is not shown in the papers of the authors. In this paper we propose a new approach to the solution of the problem, which is based on the reduction of it to finding a root of a nonlinear equation. In both cases, when the explicit form of this equation is found or not, the use of the Newton or Newton-type methods generate fast convergent iterative process for the original problem. The results of many numerical experiments confirm the efficiency of the proposed approach.
doi_str_mv 10.1016/j.camwa.2010.04.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760210433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122110003081</els_id><sourcerecordid>760210433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-48f91435cea82a04498884df831e1d2e44dfb6616d88ee5a90a7cbd58bf29ab73</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCVi8MSX4XxJnYEAVlEqVWGC2HPtCXSVxsZMgvj0uZWa60-m9u3s_hG4pySmh5f0-N7r_0jkjaUJETnh1hhZUVjyrylKeowWRtcwoY_QSXcW4J4QIzsgCbTcjBD26GXAP485b3PqAo-9mN3xgjQc_dG4AHdJ8CuMO-2Ah4MZPg9XhG8-6mwAfgm866K_RRau7CDd_dYnen5_eVi_Z9nW9WT1uM8N5MWZCtjUVvDCgJdNEiFpKKWwrOQVqGYjUN2VJSyslQKFroivT2EI2Lat1U_ElujvtTXc_J4ij6l000HV6AD9FVZWE0RSQJyU_KU3wMQZo1SG4Pj2uKFFHdGqvftGpIzpFhErokuvh5IIUYnYQVDQOBgPWBTCjst796_8BCkd5Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760210433</pqid></control><display><type>article</type><title>Iterative method for solving a nonlinear fourth order boundary value problem</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dang, Quang A. ; Luan, Vu Thai</creator><creatorcontrib>Dang, Quang A. ; Luan, Vu Thai</creatorcontrib><description>In the study of transverse vibrations of a hinged beam there arises a boundary value problem for fourth order ordinary differential equation, where a significant difficulty lies in a nonlinear term under integral sign. In recent years several authors considered finite approximation of the problem and proposed an iterative method for solving the system of nonlinear equations obtained. The essence of the iteration is the simple iteration method for a nonlinear equation, although this is not shown in the papers of the authors. In this paper we propose a new approach to the solution of the problem, which is based on the reduction of it to finding a root of a nonlinear equation. In both cases, when the explicit form of this equation is found or not, the use of the Newton or Newton-type methods generate fast convergent iterative process for the original problem. The results of many numerical experiments confirm the efficiency of the proposed approach.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2010.04.037</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Boundary value problems ; Differential equations ; Error estimates ; Hinged beam ; Iterative method ; Iterative methods ; Mathematical analysis ; Mathematical models ; Nonlinear equations ; Nonlinear fourth order boundary value problem ; Nonlinearity ; Vibration</subject><ispartof>Computers &amp; mathematics with applications (1987), 2010-07, Vol.60 (1), p.112-121</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-48f91435cea82a04498884df831e1d2e44dfb6616d88ee5a90a7cbd58bf29ab73</citedby><cites>FETCH-LOGICAL-c335t-48f91435cea82a04498884df831e1d2e44dfb6616d88ee5a90a7cbd58bf29ab73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122110003081$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dang, Quang A.</creatorcontrib><creatorcontrib>Luan, Vu Thai</creatorcontrib><title>Iterative method for solving a nonlinear fourth order boundary value problem</title><title>Computers &amp; mathematics with applications (1987)</title><description>In the study of transverse vibrations of a hinged beam there arises a boundary value problem for fourth order ordinary differential equation, where a significant difficulty lies in a nonlinear term under integral sign. In recent years several authors considered finite approximation of the problem and proposed an iterative method for solving the system of nonlinear equations obtained. The essence of the iteration is the simple iteration method for a nonlinear equation, although this is not shown in the papers of the authors. In this paper we propose a new approach to the solution of the problem, which is based on the reduction of it to finding a root of a nonlinear equation. In both cases, when the explicit form of this equation is found or not, the use of the Newton or Newton-type methods generate fast convergent iterative process for the original problem. The results of many numerical experiments confirm the efficiency of the proposed approach.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Error estimates</subject><subject>Hinged beam</subject><subject>Iterative method</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Nonlinear fourth order boundary value problem</subject><subject>Nonlinearity</subject><subject>Vibration</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCVi8MSX4XxJnYEAVlEqVWGC2HPtCXSVxsZMgvj0uZWa60-m9u3s_hG4pySmh5f0-N7r_0jkjaUJETnh1hhZUVjyrylKeowWRtcwoY_QSXcW4J4QIzsgCbTcjBD26GXAP485b3PqAo-9mN3xgjQc_dG4AHdJ8CuMO-2Ah4MZPg9XhG8-6mwAfgm866K_RRau7CDd_dYnen5_eVi_Z9nW9WT1uM8N5MWZCtjUVvDCgJdNEiFpKKWwrOQVqGYjUN2VJSyslQKFroivT2EI2Lat1U_ElujvtTXc_J4ij6l000HV6AD9FVZWE0RSQJyU_KU3wMQZo1SG4Pj2uKFFHdGqvftGpIzpFhErokuvh5IIUYnYQVDQOBgPWBTCjst796_8BCkd5Uw</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Dang, Quang A.</creator><creator>Luan, Vu Thai</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>Iterative method for solving a nonlinear fourth order boundary value problem</title><author>Dang, Quang A. ; Luan, Vu Thai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-48f91435cea82a04498884df831e1d2e44dfb6616d88ee5a90a7cbd58bf29ab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Error estimates</topic><topic>Hinged beam</topic><topic>Iterative method</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Nonlinear fourth order boundary value problem</topic><topic>Nonlinearity</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Quang A.</creatorcontrib><creatorcontrib>Luan, Vu Thai</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Quang A.</au><au>Luan, Vu Thai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative method for solving a nonlinear fourth order boundary value problem</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>60</volume><issue>1</issue><spage>112</spage><epage>121</epage><pages>112-121</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In the study of transverse vibrations of a hinged beam there arises a boundary value problem for fourth order ordinary differential equation, where a significant difficulty lies in a nonlinear term under integral sign. In recent years several authors considered finite approximation of the problem and proposed an iterative method for solving the system of nonlinear equations obtained. The essence of the iteration is the simple iteration method for a nonlinear equation, although this is not shown in the papers of the authors. In this paper we propose a new approach to the solution of the problem, which is based on the reduction of it to finding a root of a nonlinear equation. In both cases, when the explicit form of this equation is found or not, the use of the Newton or Newton-type methods generate fast convergent iterative process for the original problem. The results of many numerical experiments confirm the efficiency of the proposed approach.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2010.04.037</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2010-07, Vol.60 (1), p.112-121
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_760210433
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
Boundary value problems
Differential equations
Error estimates
Hinged beam
Iterative method
Iterative methods
Mathematical analysis
Mathematical models
Nonlinear equations
Nonlinear fourth order boundary value problem
Nonlinearity
Vibration
title Iterative method for solving a nonlinear fourth order boundary value problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20method%20for%20solving%20a%20nonlinear%20fourth%20order%20boundary%20value%20problem&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Dang,%20Quang%20A.&rft.date=2010-07-01&rft.volume=60&rft.issue=1&rft.spage=112&rft.epage=121&rft.pages=112-121&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2010.04.037&rft_dat=%3Cproquest_cross%3E760210433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760210433&rft_id=info:pmid/&rft_els_id=S0898122110003081&rfr_iscdi=true