Interactive Vector Field Feature Identification

We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2010-11, Vol.16 (6), p.1560-1568
Hauptverfasser: Daniels, Joel, Anderson, Erik W, Nonato, Luis Gustavo, Silva, Cláudio T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1568
container_issue 6
container_start_page 1560
container_title IEEE transactions on visualization and computer graphics
container_volume 16
creator Daniels, Joel
Anderson, Erik W
Nonato, Luis Gustavo
Silva, Cláudio T
description We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.
doi_str_mv 10.1109/TVCG.2010.170
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_760210335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5613498</ieee_id><sourcerecordid>1671286645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-15fac1693d1391e3413444a6df38eddc9385223825101f4c997c89df69207ef63</originalsourceid><addsrcrecordid>eNp90EFLwzAUwPEgipvToydBBh700i0vSZPmKMPNwcDL3LXE9AU6unamqeC3N2VzBw-ekvB-PMifkFugEwCqp-vNbDFhtH8qekaGoAUkNKXyPN6pUgmTTA7IVdtuKQUhMn1JBoxqlYLOhmS6rAN6Y0P5heMN2tD48bzEqhjP0YTO43hZYB1KV1oTyqa-JhfOVC3eHM8ReZ-_rGevyeptsZw9rxIrgIUEUmcsSM0L4BqQC-BCCCMLxzMsCqt5ljLGM5YCBSes1spmunBSM6rQST4ij4e9e998dtiGfFe2FqvK1Nh0ba4kZUA5T6N8-leCVMAyKUVPH_7QbdP5Ov4jj7tiHSV4FlVyUNY3bevR5Xtf7oz_jijvm-d987xvnsfm0d8ft3YfOyxO-jdyBHcHUCLiaZzK2CROfwAwH4Fq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030147438</pqid></control><display><type>article</type><title>Interactive Vector Field Feature Identification</title><source>IEEE Electronic Library (IEL)</source><creator>Daniels, Joel ; Anderson, Erik W ; Nonato, Luis Gustavo ; Silva, Cláudio T</creator><creatorcontrib>Daniels, Joel ; Anderson, Erik W ; Nonato, Luis Gustavo ; Silva, Cláudio T</creatorcontrib><description>We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2010.170</identifier><identifier>PMID: 20975198</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aerospace electronics ; Calculus ; Classification ; Computation ; data clustering ; Data visualization ; Exploration ; feature classification ; Feature extraction ; high-dimensional data ; Interactive ; Linear systems ; Mathematical analysis ; Representations ; Studies ; user interaction ; vector field ; Vectors ; Vectors (mathematics) ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2010-11, Vol.16 (6), p.1560-1568</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov/Dec 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-15fac1693d1391e3413444a6df38eddc9385223825101f4c997c89df69207ef63</citedby><cites>FETCH-LOGICAL-c412t-15fac1693d1391e3413444a6df38eddc9385223825101f4c997c89df69207ef63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5613498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5613498$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20975198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daniels, Joel</creatorcontrib><creatorcontrib>Anderson, Erik W</creatorcontrib><creatorcontrib>Nonato, Luis Gustavo</creatorcontrib><creatorcontrib>Silva, Cláudio T</creatorcontrib><title>Interactive Vector Field Feature Identification</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.</description><subject>Aerospace electronics</subject><subject>Calculus</subject><subject>Classification</subject><subject>Computation</subject><subject>data clustering</subject><subject>Data visualization</subject><subject>Exploration</subject><subject>feature classification</subject><subject>Feature extraction</subject><subject>high-dimensional data</subject><subject>Interactive</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>Studies</subject><subject>user interaction</subject><subject>vector field</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90EFLwzAUwPEgipvToydBBh700i0vSZPmKMPNwcDL3LXE9AU6unamqeC3N2VzBw-ekvB-PMifkFugEwCqp-vNbDFhtH8qekaGoAUkNKXyPN6pUgmTTA7IVdtuKQUhMn1JBoxqlYLOhmS6rAN6Y0P5heMN2tD48bzEqhjP0YTO43hZYB1KV1oTyqa-JhfOVC3eHM8ReZ-_rGevyeptsZw9rxIrgIUEUmcsSM0L4BqQC-BCCCMLxzMsCqt5ljLGM5YCBSes1spmunBSM6rQST4ij4e9e998dtiGfFe2FqvK1Nh0ba4kZUA5T6N8-leCVMAyKUVPH_7QbdP5Ov4jj7tiHSV4FlVyUNY3bevR5Xtf7oz_jijvm-d987xvnsfm0d8ft3YfOyxO-jdyBHcHUCLiaZzK2CROfwAwH4Fq</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Daniels, Joel</creator><creator>Anderson, Erik W</creator><creator>Nonato, Luis Gustavo</creator><creator>Silva, Cláudio T</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20101101</creationdate><title>Interactive Vector Field Feature Identification</title><author>Daniels, Joel ; Anderson, Erik W ; Nonato, Luis Gustavo ; Silva, Cláudio T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-15fac1693d1391e3413444a6df38eddc9385223825101f4c997c89df69207ef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerospace electronics</topic><topic>Calculus</topic><topic>Classification</topic><topic>Computation</topic><topic>data clustering</topic><topic>Data visualization</topic><topic>Exploration</topic><topic>feature classification</topic><topic>Feature extraction</topic><topic>high-dimensional data</topic><topic>Interactive</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>Studies</topic><topic>user interaction</topic><topic>vector field</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniels, Joel</creatorcontrib><creatorcontrib>Anderson, Erik W</creatorcontrib><creatorcontrib>Nonato, Luis Gustavo</creatorcontrib><creatorcontrib>Silva, Cláudio T</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Daniels, Joel</au><au>Anderson, Erik W</au><au>Nonato, Luis Gustavo</au><au>Silva, Cláudio T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Vector Field Feature Identification</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>16</volume><issue>6</issue><spage>1560</spage><epage>1568</epage><pages>1560-1568</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20975198</pmid><doi>10.1109/TVCG.2010.170</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2010-11, Vol.16 (6), p.1560-1568
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_760210335
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Calculus
Classification
Computation
data clustering
Data visualization
Exploration
feature classification
Feature extraction
high-dimensional data
Interactive
Linear systems
Mathematical analysis
Representations
Studies
user interaction
vector field
Vectors
Vectors (mathematics)
Visualization
title Interactive Vector Field Feature Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Vector%20Field%20Feature%20Identification&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Daniels,%20Joel&rft.date=2010-11-01&rft.volume=16&rft.issue=6&rft.spage=1560&rft.epage=1568&rft.pages=1560-1568&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2010.170&rft_dat=%3Cproquest_RIE%3E1671286645%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030147438&rft_id=info:pmid/20975198&rft_ieee_id=5613498&rfr_iscdi=true