A Computerized Method for Detection of Acute Cerebral Infarction on CT Images

This paper proposes a computerized method for automated detection of acute cerebral infarction (ACI) on CT images. This method is based on the difference value of image features in the two regions-of-interests (ROIs) selected at symmetrical positions. In our computerized method, first, we segmented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Radiological Technology 2010/09/20, Vol.66(9), pp.1169-1177
Hauptverfasser: Saito, Hideki, Katsuragawa, Shigehiko, Hirai, Toshinori, Kakeda, Shingo, Kourogi, Yukunori
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1177
container_issue 9
container_start_page 1169
container_title Japanese Journal of Radiological Technology
container_volume 66
creator Saito, Hideki
Katsuragawa, Shigehiko
Hirai, Toshinori
Kakeda, Shingo
Kourogi, Yukunori
description This paper proposes a computerized method for automated detection of acute cerebral infarction (ACI) on CT images. This method is based on the difference value of image features in the two regions-of-interests (ROIs) selected at symmetrical positions. In our computerized method, first, we segmented the brain parenchyma by the thresholding technique after correction of inclination of the midsagittal plane with translation and rotation of the image. Then we selected the middle cerebral artery (MCA) region of the brain parenchyma. Moreover, many ROIs with a 32×32 matrix size were selected in the MCA region. In addition, image features in each ROI were determined from the statistical analysis, the co-occurrence matrix and the run length matrix. Finally, ROIs with ACI were classified by using a linear discriminant analysis with difference values of image features in two ROIs at symmetrical positions. Nineteen cases with ACI and normal 14 cases were employed in this study. As a result of our experiments, the sensitivity of detection of ACI was 88.0% with an average number of false positives of 4.6 per case. Our computerized method provided a relatively high performance for detection of ACI. Therefore, we believe this method would be useful for an algorithm of a computer-aided diagnosis to detect ACI on CT images.
doi_str_mv 10.6009/jjrt.66.1169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760209551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>760209551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3339-10fdf66b632900bdebe029e8b7745b3b929d109ffd616cdb9c6628b86ef4ff993</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWALgWhVujEjbyyk2HHixGMUXpVasZTZsp1rSJVHsZMBfj2JUrL4Sr6fjnQPQreUbDgh4vF4dN2G8w2lXFygJU1TGkRpyi7RkjAugoiReIHW3peaDH74ItE1WoREJHHIkiXaZzhv61PfgSt_ocB76L7aAtvW4SfowHRl2-DW4swMBOfgQDtV4W1jlTsvG5wf8LZWn-Bv0JVVlYf1ea7Qx8vzIX8Ldu-v2zzbBYYxJgJKbGE515yFghBdgAYSCkh1kkSxZlqEoqBEWFtwyk2hheE8THXKwUbWCsFW6H7KPbn2uwffybr0BqpKNdD2XiacDCfGMR3kwySNa713YOXJlbVyP5ISOVYoxwol53KscOB35-Be11DM-L-wAWQTOPpuuHgGynWlqWBOE9Mzhs4786WchIb9AcRmg74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760209551</pqid></control><display><type>article</type><title>A Computerized Method for Detection of Acute Cerebral Infarction on CT Images</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saito, Hideki ; Katsuragawa, Shigehiko ; Hirai, Toshinori ; Kakeda, Shingo ; Kourogi, Yukunori</creator><creatorcontrib>Saito, Hideki ; Katsuragawa, Shigehiko ; Hirai, Toshinori ; Kakeda, Shingo ; Kourogi, Yukunori</creatorcontrib><description>This paper proposes a computerized method for automated detection of acute cerebral infarction (ACI) on CT images. This method is based on the difference value of image features in the two regions-of-interests (ROIs) selected at symmetrical positions. In our computerized method, first, we segmented the brain parenchyma by the thresholding technique after correction of inclination of the midsagittal plane with translation and rotation of the image. Then we selected the middle cerebral artery (MCA) region of the brain parenchyma. Moreover, many ROIs with a 32×32 matrix size were selected in the MCA region. In addition, image features in each ROI were determined from the statistical analysis, the co-occurrence matrix and the run length matrix. Finally, ROIs with ACI were classified by using a linear discriminant analysis with difference values of image features in two ROIs at symmetrical positions. Nineteen cases with ACI and normal 14 cases were employed in this study. As a result of our experiments, the sensitivity of detection of ACI was 88.0% with an average number of false positives of 4.6 per case. Our computerized method provided a relatively high performance for detection of ACI. Therefore, we believe this method would be useful for an algorithm of a computer-aided diagnosis to detect ACI on CT images.</description><identifier>ISSN: 0369-4305</identifier><identifier>EISSN: 1881-4883</identifier><identifier>DOI: 10.6009/jjrt.66.1169</identifier><identifier>PMID: 20975237</identifier><language>eng ; jpn</language><publisher>Japan: Japanese Society of Radiological Technology</publisher><subject>acute cerebral infarction (ACI) ; Acute Disease ; Aged ; Algorithms ; Brain - diagnostic imaging ; Cerebral Infarction - diagnostic imaging ; co-occurrence matrix ; computed tomography (CT) ; computer-aided diagnosis (CAD) ; Female ; Humans ; Male ; run length matrix ; Sensitivity and Specificity ; Tomography, X-Ray Computed</subject><ispartof>Japanese Journal of Radiological Technology, 2010/09/20, Vol.66(9), pp.1169-1177</ispartof><rights>2010 Japanese Society of Radiological Technology</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3339-10fdf66b632900bdebe029e8b7745b3b929d109ffd616cdb9c6628b86ef4ff993</citedby><cites>FETCH-LOGICAL-c3339-10fdf66b632900bdebe029e8b7745b3b929d109ffd616cdb9c6628b86ef4ff993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20975237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saito, Hideki</creatorcontrib><creatorcontrib>Katsuragawa, Shigehiko</creatorcontrib><creatorcontrib>Hirai, Toshinori</creatorcontrib><creatorcontrib>Kakeda, Shingo</creatorcontrib><creatorcontrib>Kourogi, Yukunori</creatorcontrib><title>A Computerized Method for Detection of Acute Cerebral Infarction on CT Images</title><title>Japanese Journal of Radiological Technology</title><addtitle>Jpn. J. Radiol. Technol.</addtitle><description>This paper proposes a computerized method for automated detection of acute cerebral infarction (ACI) on CT images. This method is based on the difference value of image features in the two regions-of-interests (ROIs) selected at symmetrical positions. In our computerized method, first, we segmented the brain parenchyma by the thresholding technique after correction of inclination of the midsagittal plane with translation and rotation of the image. Then we selected the middle cerebral artery (MCA) region of the brain parenchyma. Moreover, many ROIs with a 32×32 matrix size were selected in the MCA region. In addition, image features in each ROI were determined from the statistical analysis, the co-occurrence matrix and the run length matrix. Finally, ROIs with ACI were classified by using a linear discriminant analysis with difference values of image features in two ROIs at symmetrical positions. Nineteen cases with ACI and normal 14 cases were employed in this study. As a result of our experiments, the sensitivity of detection of ACI was 88.0% with an average number of false positives of 4.6 per case. Our computerized method provided a relatively high performance for detection of ACI. Therefore, we believe this method would be useful for an algorithm of a computer-aided diagnosis to detect ACI on CT images.</description><subject>acute cerebral infarction (ACI)</subject><subject>Acute Disease</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Cerebral Infarction - diagnostic imaging</subject><subject>co-occurrence matrix</subject><subject>computed tomography (CT)</subject><subject>computer-aided diagnosis (CAD)</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>run length matrix</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, X-Ray Computed</subject><issn>0369-4305</issn><issn>1881-4883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90DtPwzAUBWALgWhVujEjbyyk2HHixGMUXpVasZTZsp1rSJVHsZMBfj2JUrL4Sr6fjnQPQreUbDgh4vF4dN2G8w2lXFygJU1TGkRpyi7RkjAugoiReIHW3peaDH74ItE1WoREJHHIkiXaZzhv61PfgSt_ocB76L7aAtvW4SfowHRl2-DW4swMBOfgQDtV4W1jlTsvG5wf8LZWn-Bv0JVVlYf1ea7Qx8vzIX8Ldu-v2zzbBYYxJgJKbGE515yFghBdgAYSCkh1kkSxZlqEoqBEWFtwyk2hheE8THXKwUbWCsFW6H7KPbn2uwffybr0BqpKNdD2XiacDCfGMR3kwySNa713YOXJlbVyP5ISOVYoxwol53KscOB35-Be11DM-L-wAWQTOPpuuHgGynWlqWBOE9Mzhs4786WchIb9AcRmg74</recordid><startdate>20100920</startdate><enddate>20100920</enddate><creator>Saito, Hideki</creator><creator>Katsuragawa, Shigehiko</creator><creator>Hirai, Toshinori</creator><creator>Kakeda, Shingo</creator><creator>Kourogi, Yukunori</creator><general>Japanese Society of Radiological Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100920</creationdate><title>A Computerized Method for Detection of Acute Cerebral Infarction on CT Images</title><author>Saito, Hideki ; Katsuragawa, Shigehiko ; Hirai, Toshinori ; Kakeda, Shingo ; Kourogi, Yukunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3339-10fdf66b632900bdebe029e8b7745b3b929d109ffd616cdb9c6628b86ef4ff993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2010</creationdate><topic>acute cerebral infarction (ACI)</topic><topic>Acute Disease</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Cerebral Infarction - diagnostic imaging</topic><topic>co-occurrence matrix</topic><topic>computed tomography (CT)</topic><topic>computer-aided diagnosis (CAD)</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>run length matrix</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, X-Ray Computed</topic><toplevel>online_resources</toplevel><creatorcontrib>Saito, Hideki</creatorcontrib><creatorcontrib>Katsuragawa, Shigehiko</creatorcontrib><creatorcontrib>Hirai, Toshinori</creatorcontrib><creatorcontrib>Kakeda, Shingo</creatorcontrib><creatorcontrib>Kourogi, Yukunori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Japanese Journal of Radiological Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Hideki</au><au>Katsuragawa, Shigehiko</au><au>Hirai, Toshinori</au><au>Kakeda, Shingo</au><au>Kourogi, Yukunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computerized Method for Detection of Acute Cerebral Infarction on CT Images</atitle><jtitle>Japanese Journal of Radiological Technology</jtitle><addtitle>Jpn. J. Radiol. Technol.</addtitle><date>2010-09-20</date><risdate>2010</risdate><volume>66</volume><issue>9</issue><spage>1169</spage><epage>1177</epage><pages>1169-1177</pages><issn>0369-4305</issn><eissn>1881-4883</eissn><abstract>This paper proposes a computerized method for automated detection of acute cerebral infarction (ACI) on CT images. This method is based on the difference value of image features in the two regions-of-interests (ROIs) selected at symmetrical positions. In our computerized method, first, we segmented the brain parenchyma by the thresholding technique after correction of inclination of the midsagittal plane with translation and rotation of the image. Then we selected the middle cerebral artery (MCA) region of the brain parenchyma. Moreover, many ROIs with a 32×32 matrix size were selected in the MCA region. In addition, image features in each ROI were determined from the statistical analysis, the co-occurrence matrix and the run length matrix. Finally, ROIs with ACI were classified by using a linear discriminant analysis with difference values of image features in two ROIs at symmetrical positions. Nineteen cases with ACI and normal 14 cases were employed in this study. As a result of our experiments, the sensitivity of detection of ACI was 88.0% with an average number of false positives of 4.6 per case. Our computerized method provided a relatively high performance for detection of ACI. Therefore, we believe this method would be useful for an algorithm of a computer-aided diagnosis to detect ACI on CT images.</abstract><cop>Japan</cop><pub>Japanese Society of Radiological Technology</pub><pmid>20975237</pmid><doi>10.6009/jjrt.66.1169</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0369-4305
ispartof Japanese Journal of Radiological Technology, 2010/09/20, Vol.66(9), pp.1169-1177
issn 0369-4305
1881-4883
language eng ; jpn
recordid cdi_proquest_miscellaneous_760209551
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects acute cerebral infarction (ACI)
Acute Disease
Aged
Algorithms
Brain - diagnostic imaging
Cerebral Infarction - diagnostic imaging
co-occurrence matrix
computed tomography (CT)
computer-aided diagnosis (CAD)
Female
Humans
Male
run length matrix
Sensitivity and Specificity
Tomography, X-Ray Computed
title A Computerized Method for Detection of Acute Cerebral Infarction on CT Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computerized%20Method%20for%20Detection%20of%20Acute%20Cerebral%20Infarction%20on%20CT%20Images&rft.jtitle=Japanese%20Journal%20of%20Radiological%20Technology&rft.au=Saito,%20Hideki&rft.date=2010-09-20&rft.volume=66&rft.issue=9&rft.spage=1169&rft.epage=1177&rft.pages=1169-1177&rft.issn=0369-4305&rft.eissn=1881-4883&rft_id=info:doi/10.6009/jjrt.66.1169&rft_dat=%3Cproquest_cross%3E760209551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760209551&rft_id=info:pmid/20975237&rfr_iscdi=true