A robust clustering procedure for fuzzy data
In this paper we propose a robust clustering method for handling L R -type fuzzy numbers. The proposed method based on similarity measures is not necessary to specify the cluster number and initials. Several numerical examples demonstrate the effectiveness of the proposed robust clustering method, e...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2010-07, Vol.60 (1), p.151-165 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 1 |
container_start_page | 151 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 60 |
creator | Hung, Wen-Liang Yang, Miin-Shen Stanley Lee, E. |
description | In this paper we propose a robust clustering method for handling
L
R
-type fuzzy numbers. The proposed method based on similarity measures is not necessary to specify the cluster number and initials. Several numerical examples demonstrate the effectiveness of the proposed robust clustering method, especially robust to outliers, different cluster shapes and initial guess. We then apply this algorithm to three real data sets. These are Taiwanese tea, student data and patient blood pressure data sets. Because tea evaluation comes under an expert subjective judgment for Taiwanese tea, the quality levels are ambiguity and imprecision inherent to human perception. Thus,
L
R
-type fuzzy numbers are used to describe these quality levels. The proposed robust clustering method successfully establishes a performance evaluation system to help consumers better understand and choose Taiwanese tea. Similarly,
L
R
-type fuzzy numbers are also used to describe data types for student and patient blood pressure data. The proposed method actually presents good clustering results for these real data sets. |
doi_str_mv | 10.1016/j.camwa.2010.04.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760208889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211000324X</els_id><sourcerecordid>760208889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-60933adac776b5631dd6f467b47ed9bf35c1564c5dcf48a681235d982f5e76a33</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4CL3vz4taXZDfJHjyU4hcUvOg5ZJMXSdl2a7KrtL_e1HoWhvfgMfOYGUKuKcwoUHG3mlmz_jYzBvkCVQY7IROqJC-lEOqUTEA1qqSM0XNykdIKACrOYEJu50Xs2zENhe3yxBg2H8U29hbdGLHwfSz8uN_vCmcGc0nOvOkSXv3tKXl_fHhbPJfL16eXxXxZWq5gKAU0nBtnrJSirQWnzglfCdlWEl3Tel5bWovK1s76ShmhKOO1axTzNUphOJ-Sm-PfbORzxDTodUgWu85ssB-TlgIYKKWazORHpo19ShG93sawNnGnKehDNXqlf6vRh2o0VBksq-6PKswhvgJGnWzATc4cItpBuz78q_8BlF9sqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760208889</pqid></control><display><type>article</type><title>A robust clustering procedure for fuzzy data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hung, Wen-Liang ; Yang, Miin-Shen ; Stanley Lee, E.</creator><creatorcontrib>Hung, Wen-Liang ; Yang, Miin-Shen ; Stanley Lee, E.</creatorcontrib><description>In this paper we propose a robust clustering method for handling
L
R
-type fuzzy numbers. The proposed method based on similarity measures is not necessary to specify the cluster number and initials. Several numerical examples demonstrate the effectiveness of the proposed robust clustering method, especially robust to outliers, different cluster shapes and initial guess. We then apply this algorithm to three real data sets. These are Taiwanese tea, student data and patient blood pressure data sets. Because tea evaluation comes under an expert subjective judgment for Taiwanese tea, the quality levels are ambiguity and imprecision inherent to human perception. Thus,
L
R
-type fuzzy numbers are used to describe these quality levels. The proposed robust clustering method successfully establishes a performance evaluation system to help consumers better understand and choose Taiwanese tea. Similarly,
L
R
-type fuzzy numbers are also used to describe data types for student and patient blood pressure data. The proposed method actually presents good clustering results for these real data sets.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2010.04.042</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>[formula omitted]-type fuzzy number ; Blood pressure ; Clustering ; Clusters ; Fuzzy systems ; Mathematical models ; Outlier ; Patients ; Robust clustering algorithm ; Robustness ; Similarity measure ; Students ; Tea ; Tea evaluation</subject><ispartof>Computers & mathematics with applications (1987), 2010-07, Vol.60 (1), p.151-165</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-60933adac776b5631dd6f467b47ed9bf35c1564c5dcf48a681235d982f5e76a33</citedby><cites>FETCH-LOGICAL-c380t-60933adac776b5631dd6f467b47ed9bf35c1564c5dcf48a681235d982f5e76a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2010.04.042$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hung, Wen-Liang</creatorcontrib><creatorcontrib>Yang, Miin-Shen</creatorcontrib><creatorcontrib>Stanley Lee, E.</creatorcontrib><title>A robust clustering procedure for fuzzy data</title><title>Computers & mathematics with applications (1987)</title><description>In this paper we propose a robust clustering method for handling
L
R
-type fuzzy numbers. The proposed method based on similarity measures is not necessary to specify the cluster number and initials. Several numerical examples demonstrate the effectiveness of the proposed robust clustering method, especially robust to outliers, different cluster shapes and initial guess. We then apply this algorithm to three real data sets. These are Taiwanese tea, student data and patient blood pressure data sets. Because tea evaluation comes under an expert subjective judgment for Taiwanese tea, the quality levels are ambiguity and imprecision inherent to human perception. Thus,
L
R
-type fuzzy numbers are used to describe these quality levels. The proposed robust clustering method successfully establishes a performance evaluation system to help consumers better understand and choose Taiwanese tea. Similarly,
L
R
-type fuzzy numbers are also used to describe data types for student and patient blood pressure data. The proposed method actually presents good clustering results for these real data sets.</description><subject>[formula omitted]-type fuzzy number</subject><subject>Blood pressure</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Fuzzy systems</subject><subject>Mathematical models</subject><subject>Outlier</subject><subject>Patients</subject><subject>Robust clustering algorithm</subject><subject>Robustness</subject><subject>Similarity measure</subject><subject>Students</subject><subject>Tea</subject><subject>Tea evaluation</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4CL3vz4taXZDfJHjyU4hcUvOg5ZJMXSdl2a7KrtL_e1HoWhvfgMfOYGUKuKcwoUHG3mlmz_jYzBvkCVQY7IROqJC-lEOqUTEA1qqSM0XNykdIKACrOYEJu50Xs2zENhe3yxBg2H8U29hbdGLHwfSz8uN_vCmcGc0nOvOkSXv3tKXl_fHhbPJfL16eXxXxZWq5gKAU0nBtnrJSirQWnzglfCdlWEl3Tel5bWovK1s76ShmhKOO1axTzNUphOJ-Sm-PfbORzxDTodUgWu85ssB-TlgIYKKWazORHpo19ShG93sawNnGnKehDNXqlf6vRh2o0VBksq-6PKswhvgJGnWzATc4cItpBuz78q_8BlF9sqQ</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Hung, Wen-Liang</creator><creator>Yang, Miin-Shen</creator><creator>Stanley Lee, E.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>A robust clustering procedure for fuzzy data</title><author>Hung, Wen-Liang ; Yang, Miin-Shen ; Stanley Lee, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-60933adac776b5631dd6f467b47ed9bf35c1564c5dcf48a681235d982f5e76a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>[formula omitted]-type fuzzy number</topic><topic>Blood pressure</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Fuzzy systems</topic><topic>Mathematical models</topic><topic>Outlier</topic><topic>Patients</topic><topic>Robust clustering algorithm</topic><topic>Robustness</topic><topic>Similarity measure</topic><topic>Students</topic><topic>Tea</topic><topic>Tea evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Wen-Liang</creatorcontrib><creatorcontrib>Yang, Miin-Shen</creatorcontrib><creatorcontrib>Stanley Lee, E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Wen-Liang</au><au>Yang, Miin-Shen</au><au>Stanley Lee, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust clustering procedure for fuzzy data</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>60</volume><issue>1</issue><spage>151</spage><epage>165</epage><pages>151-165</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper we propose a robust clustering method for handling
L
R
-type fuzzy numbers. The proposed method based on similarity measures is not necessary to specify the cluster number and initials. Several numerical examples demonstrate the effectiveness of the proposed robust clustering method, especially robust to outliers, different cluster shapes and initial guess. We then apply this algorithm to three real data sets. These are Taiwanese tea, student data and patient blood pressure data sets. Because tea evaluation comes under an expert subjective judgment for Taiwanese tea, the quality levels are ambiguity and imprecision inherent to human perception. Thus,
L
R
-type fuzzy numbers are used to describe these quality levels. The proposed robust clustering method successfully establishes a performance evaluation system to help consumers better understand and choose Taiwanese tea. Similarly,
L
R
-type fuzzy numbers are also used to describe data types for student and patient blood pressure data. The proposed method actually presents good clustering results for these real data sets.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2010.04.042</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2010-07, Vol.60 (1), p.151-165 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_760208889 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | [formula omitted]-type fuzzy number Blood pressure Clustering Clusters Fuzzy systems Mathematical models Outlier Patients Robust clustering algorithm Robustness Similarity measure Students Tea Tea evaluation |
title | A robust clustering procedure for fuzzy data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20clustering%20procedure%20for%20fuzzy%20data&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Hung,%20Wen-Liang&rft.date=2010-07-01&rft.volume=60&rft.issue=1&rft.spage=151&rft.epage=165&rft.pages=151-165&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2010.04.042&rft_dat=%3Cproquest_cross%3E760208889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760208889&rft_id=info:pmid/&rft_els_id=S089812211000324X&rfr_iscdi=true |