A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes
Carbon fiber electrodes are greatly promising for microelectronic applications including high performance biosensors, miniaturized transmitters, and energy storage and generation devices. For biosensor applications, one drawback of using carbon fiber microelectrodes, especially single fiber electrod...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2010-06, Vol.25 (10), p.2343-2350 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2350 |
---|---|
container_issue | 10 |
container_start_page | 2343 |
container_title | Biosensors & bioelectronics |
container_volume | 25 |
creator | Zhao, Xueyan Lu, Xin Tze, William T.Y. Wang, Ping |
description | Carbon fiber electrodes are greatly promising for microelectronic applications including high performance biosensors, miniaturized transmitters, and energy storage and generation devices. For biosensor applications, one drawback of using carbon fiber microelectrodes, especially single fiber electrodes, is the weak electronic signals, a consequence of low surface area of fibers, which ultimately limit the sensitivity of the sensors. In this paper, we report a novel single fiber microelectrode with branched carbon nanotubes for enhanced sensing performance. The fiber microelectrode was prepared from carbonization of cellulose fibers. Upon introduction of carbon nanotubes, the carbon fibers exhibited a significant increase in the specific surface area from |
doi_str_mv | 10.1016/j.bios.2010.03.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760206503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095656631000148X</els_id><sourcerecordid>733406188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-b70280be0039700995d33d3e7c7ac6e0ef478ce1da3e25366fa89f9ca4229c293</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVoaDZp_0APRZeSk7cjydYH9BJCviCQS3oWsjzOavHaqcbbkH9fLbtpbw0MSIjnHQ3PMPZFwFKA0N_XyzZNtJRQHkCVgiO2ENaoqpaq-cAW4BpdNVqrE3ZKtAYAIxx8ZCcSamHBugXDC05pfBqQx5DbaeR9ajHzTYp5wgHjnKcO-UuaV7zNYYyrAr-hYxinedsi8X7KvMxyCMQVlnwY-HO5IxHSJ3bch4Hw8-E8Yz-vrx4vb6v7h5u7y4v7KtbCzFVrQFpoEUA5A-Bc0ynVKTTRhKgRsK-NjSi6oFA2Sus-WNe7GGopXZROnbHzfd_y868t0uw3iSIOQxhx2pI3GiToBtT7pFI1aGFtIeWeLEaIMvb-OadNyK9egN_twa_9bg9-twcPqhSU0NdD-227we5v5E18Ab4dgEBFVb9zm-gfJ62wtTGF-7HnsGj7nTB7ignHiF3KRbbvpvS_Of4AiSOnMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733406188</pqid></control><display><type>article</type><title>A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Xueyan ; Lu, Xin ; Tze, William T.Y. ; Wang, Ping</creator><creatorcontrib>Zhao, Xueyan ; Lu, Xin ; Tze, William T.Y. ; Wang, Ping</creatorcontrib><description>Carbon fiber electrodes are greatly promising for microelectronic applications including high performance biosensors, miniaturized transmitters, and energy storage and generation devices. For biosensor applications, one drawback of using carbon fiber microelectrodes, especially single fiber electrodes, is the weak electronic signals, a consequence of low surface area of fibers, which ultimately limit the sensitivity of the sensors. In this paper, we report a novel single fiber microelectrode with branched carbon nanotubes for enhanced sensing performance. The fiber microelectrode was prepared from carbonization of cellulose fibers. Upon introduction of carbon nanotubes, the carbon fibers exhibited a significant increase in the specific surface area from <10 to 36.4
m
2/g (determined by the BET method). A single fiber electrode with such a hierarchical structure was examined for redox reactions of coenzyme NAD(H) which is useful to mediate the assays and transformations of a broad range of biochemicals. Experimental results showed that carbon nanotubes enhanced the redox reactions on surfaces of the electrode by reducing the oxidation potential of NAD(H) from 0.8 to 0.55
V. The single carbon fiber with branched nanotubes was also examined for the detection of glycerol, and the results showed linear responding signals in a concentration range of 40–250
μM. These results are comparable to the properties of fossil-based carbon materials, and thus our cellulose-based carbon electrodes provide a potentially sustainable alternative in bioelectrochemical applications.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2010.03.030</identifier><identifier>PMID: 20418089</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biotechnology ; Carbon - chemistry ; Carbon fiber microelectrode ; Carbon nanotubes modified electrode ; Conductometry - instrumentation ; Equipment Design ; Equipment Failure Analysis ; Fundamental and applied biological sciences. Psychology ; Glycerol dehydrogenase detection ; Glycerol oxidation ; Microelectrodes ; NADH oxidation ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Biosensors & bioelectronics, 2010-06, Vol.25 (10), p.2343-2350</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-b70280be0039700995d33d3e7c7ac6e0ef478ce1da3e25366fa89f9ca4229c293</citedby><cites>FETCH-LOGICAL-c417t-b70280be0039700995d33d3e7c7ac6e0ef478ce1da3e25366fa89f9ca4229c293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095656631000148X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22818477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20418089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xueyan</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Tze, William T.Y.</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><title>A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Carbon fiber electrodes are greatly promising for microelectronic applications including high performance biosensors, miniaturized transmitters, and energy storage and generation devices. For biosensor applications, one drawback of using carbon fiber microelectrodes, especially single fiber electrodes, is the weak electronic signals, a consequence of low surface area of fibers, which ultimately limit the sensitivity of the sensors. In this paper, we report a novel single fiber microelectrode with branched carbon nanotubes for enhanced sensing performance. The fiber microelectrode was prepared from carbonization of cellulose fibers. Upon introduction of carbon nanotubes, the carbon fibers exhibited a significant increase in the specific surface area from <10 to 36.4
m
2/g (determined by the BET method). A single fiber electrode with such a hierarchical structure was examined for redox reactions of coenzyme NAD(H) which is useful to mediate the assays and transformations of a broad range of biochemicals. Experimental results showed that carbon nanotubes enhanced the redox reactions on surfaces of the electrode by reducing the oxidation potential of NAD(H) from 0.8 to 0.55
V. The single carbon fiber with branched nanotubes was also examined for the detection of glycerol, and the results showed linear responding signals in a concentration range of 40–250
μM. These results are comparable to the properties of fossil-based carbon materials, and thus our cellulose-based carbon electrodes provide a potentially sustainable alternative in bioelectrochemical applications.</description><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biotechnology</subject><subject>Carbon - chemistry</subject><subject>Carbon fiber microelectrode</subject><subject>Carbon nanotubes modified electrode</subject><subject>Conductometry - instrumentation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycerol dehydrogenase detection</subject><subject>Glycerol oxidation</subject><subject>Microelectrodes</subject><subject>NADH oxidation</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVoaDZp_0APRZeSk7cjydYH9BJCviCQS3oWsjzOavHaqcbbkH9fLbtpbw0MSIjnHQ3PMPZFwFKA0N_XyzZNtJRQHkCVgiO2ENaoqpaq-cAW4BpdNVqrE3ZKtAYAIxx8ZCcSamHBugXDC05pfBqQx5DbaeR9ajHzTYp5wgHjnKcO-UuaV7zNYYyrAr-hYxinedsi8X7KvMxyCMQVlnwY-HO5IxHSJ3bch4Hw8-E8Yz-vrx4vb6v7h5u7y4v7KtbCzFVrQFpoEUA5A-Bc0ynVKTTRhKgRsK-NjSi6oFA2Sus-WNe7GGopXZROnbHzfd_y868t0uw3iSIOQxhx2pI3GiToBtT7pFI1aGFtIeWeLEaIMvb-OadNyK9egN_twa_9bg9-twcPqhSU0NdD-227we5v5E18Ab4dgEBFVb9zm-gfJ62wtTGF-7HnsGj7nTB7ignHiF3KRbbvpvS_Of4AiSOnMA</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Zhao, Xueyan</creator><creator>Lu, Xin</creator><creator>Tze, William T.Y.</creator><creator>Wang, Ping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100615</creationdate><title>A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes</title><author>Zhao, Xueyan ; Lu, Xin ; Tze, William T.Y. ; Wang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-b70280be0039700995d33d3e7c7ac6e0ef478ce1da3e25366fa89f9ca4229c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biotechnology</topic><topic>Carbon - chemistry</topic><topic>Carbon fiber microelectrode</topic><topic>Carbon nanotubes modified electrode</topic><topic>Conductometry - instrumentation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycerol dehydrogenase detection</topic><topic>Glycerol oxidation</topic><topic>Microelectrodes</topic><topic>NADH oxidation</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xueyan</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Tze, William T.Y.</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xueyan</au><au>Lu, Xin</au><au>Tze, William T.Y.</au><au>Wang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2010-06-15</date><risdate>2010</risdate><volume>25</volume><issue>10</issue><spage>2343</spage><epage>2350</epage><pages>2343-2350</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Carbon fiber electrodes are greatly promising for microelectronic applications including high performance biosensors, miniaturized transmitters, and energy storage and generation devices. For biosensor applications, one drawback of using carbon fiber microelectrodes, especially single fiber electrodes, is the weak electronic signals, a consequence of low surface area of fibers, which ultimately limit the sensitivity of the sensors. In this paper, we report a novel single fiber microelectrode with branched carbon nanotubes for enhanced sensing performance. The fiber microelectrode was prepared from carbonization of cellulose fibers. Upon introduction of carbon nanotubes, the carbon fibers exhibited a significant increase in the specific surface area from <10 to 36.4
m
2/g (determined by the BET method). A single fiber electrode with such a hierarchical structure was examined for redox reactions of coenzyme NAD(H) which is useful to mediate the assays and transformations of a broad range of biochemicals. Experimental results showed that carbon nanotubes enhanced the redox reactions on surfaces of the electrode by reducing the oxidation potential of NAD(H) from 0.8 to 0.55
V. The single carbon fiber with branched nanotubes was also examined for the detection of glycerol, and the results showed linear responding signals in a concentration range of 40–250
μM. These results are comparable to the properties of fossil-based carbon materials, and thus our cellulose-based carbon electrodes provide a potentially sustainable alternative in bioelectrochemical applications.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20418089</pmid><doi>10.1016/j.bios.2010.03.030</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2010-06, Vol.25 (10), p.2343-2350 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_760206503 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biological and medical sciences Biosensing Techniques - instrumentation Biotechnology Carbon - chemistry Carbon fiber microelectrode Carbon nanotubes modified electrode Conductometry - instrumentation Equipment Design Equipment Failure Analysis Fundamental and applied biological sciences. Psychology Glycerol dehydrogenase detection Glycerol oxidation Microelectrodes NADH oxidation Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure Reproducibility of Results Sensitivity and Specificity |
title | A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single%20carbon%20fiber%20microelectrode%20with%20branching%20carbon%20nanotubes%20for%20bioelectrochemical%20processes&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Zhao,%20Xueyan&rft.date=2010-06-15&rft.volume=25&rft.issue=10&rft.spage=2343&rft.epage=2350&rft.pages=2343-2350&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2010.03.030&rft_dat=%3Cproquest_cross%3E733406188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733406188&rft_id=info:pmid/20418089&rft_els_id=S095656631000148X&rfr_iscdi=true |