Smoothing Newton method for NCP with the identification of degenerate indices

We present a new smoothing Newton method for nonlinear complementarity problems (NCP(F)) by using an NCP function to reformulate the problem to its equivalent form. Compared with most current smoothing methods, our method contains an estimating technique based on the active-set strategy. This techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2010-10, Vol.234 (12), p.3424-3435
Hauptverfasser: Yu, Haodong, Pu, Dingguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3435
container_issue 12
container_start_page 3424
container_title Journal of computational and applied mathematics
container_volume 234
creator Yu, Haodong
Pu, Dingguo
description We present a new smoothing Newton method for nonlinear complementarity problems (NCP(F)) by using an NCP function to reformulate the problem to its equivalent form. Compared with most current smoothing methods, our method contains an estimating technique based on the active-set strategy. This technique focuses on the identification of the degenerate set for a solution x ∗ of the NCP(F). The proposed method has the global convergence, each accumulation point is a solution of the problem. The introduction of the active-set strategy effectively reduces the scale of the problem. Under some regularity assumption, the degenerate set can be identified correctly near the solution and local superlinear convergence is obtained as well.
doi_str_mv 10.1016/j.cam.2010.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760206369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037704271000258X</els_id><sourcerecordid>760206369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-77b362466b75578021f3dbe638ed9b3d592517e6a52ca25d63839eb8cdd679353</originalsourceid><addsrcrecordid>eNp9kM1rGzEQxUVJoI7TP6C3vYScdjuSVtIuOQXTL8gXJD0LrTQby3hXriQn9L-vjE2PPQ3D-703zCPkM4WGApVfNo01U8Og7CAagPYDWdBO9TVVqjsjC-BK1dAy9ZFcpLQBANnTdkHun6cQ8trPr9UDvucwVxPmdXDVGGL1sHqq3n1eV3mNlXc4Zz96a7IvWBgrh684YzS5iLPzFtMlOR_NNuGn01ySX9--vqx-1HeP33-ubu9q2wLLtVIDl6yVclBCqA4YHbkbUPIOXT9wJ3omqEJpBLOGCVcE3uPQWeek6rngS3J9zN3F8HuPKevJJ4vbrZkx7JNWEhhILvtC0iNpY0gp4qh30U8m_tEU9KE5vdGlOX1oToPQpbniuTqlm2TNdoxmtj79MzIOigmghbs5clheffMYdbIeZ4vOR7RZu-D_c-UvK8KCMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760206369</pqid></control><display><type>article</type><title>Smoothing Newton method for NCP with the identification of degenerate indices</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Haodong ; Pu, Dingguo</creator><creatorcontrib>Yu, Haodong ; Pu, Dingguo</creatorcontrib><description>We present a new smoothing Newton method for nonlinear complementarity problems (NCP(F)) by using an NCP function to reformulate the problem to its equivalent form. Compared with most current smoothing methods, our method contains an estimating technique based on the active-set strategy. This technique focuses on the identification of the degenerate set for a solution x ∗ of the NCP(F). The proposed method has the global convergence, each accumulation point is a solution of the problem. The introduction of the active-set strategy effectively reduces the scale of the problem. Under some regularity assumption, the degenerate set can be identified correctly near the solution and local superlinear convergence is obtained as well.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2010.05.004</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Convergence ; Degenerate indices ; Equivalence ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Global convergence ; Mathematical analysis ; Mathematical models ; Mathematics ; Newton methods ; Nonlinear algebraic and transcendental equations ; Nonlinear complementarity problems ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Regularity ; Sciences and techniques of general use ; Smoothing ; Smoothing methods ; Strategy ; Superlinear convergence ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of computational and applied mathematics, 2010-10, Vol.234 (12), p.3424-3435</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-77b362466b75578021f3dbe638ed9b3d592517e6a52ca25d63839eb8cdd679353</citedby><cites>FETCH-LOGICAL-c402t-77b362466b75578021f3dbe638ed9b3d592517e6a52ca25d63839eb8cdd679353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2010.05.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23072501$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Haodong</creatorcontrib><creatorcontrib>Pu, Dingguo</creatorcontrib><title>Smoothing Newton method for NCP with the identification of degenerate indices</title><title>Journal of computational and applied mathematics</title><description>We present a new smoothing Newton method for nonlinear complementarity problems (NCP(F)) by using an NCP function to reformulate the problem to its equivalent form. Compared with most current smoothing methods, our method contains an estimating technique based on the active-set strategy. This technique focuses on the identification of the degenerate set for a solution x ∗ of the NCP(F). The proposed method has the global convergence, each accumulation point is a solution of the problem. The introduction of the active-set strategy effectively reduces the scale of the problem. Under some regularity assumption, the degenerate set can be identified correctly near the solution and local superlinear convergence is obtained as well.</description><subject>Convergence</subject><subject>Degenerate indices</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Global convergence</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Newton methods</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Nonlinear complementarity problems</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Regularity</subject><subject>Sciences and techniques of general use</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Strategy</subject><subject>Superlinear convergence</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1rGzEQxUVJoI7TP6C3vYScdjuSVtIuOQXTL8gXJD0LrTQby3hXriQn9L-vjE2PPQ3D-703zCPkM4WGApVfNo01U8Og7CAagPYDWdBO9TVVqjsjC-BK1dAy9ZFcpLQBANnTdkHun6cQ8trPr9UDvucwVxPmdXDVGGL1sHqq3n1eV3mNlXc4Zz96a7IvWBgrh684YzS5iLPzFtMlOR_NNuGn01ySX9--vqx-1HeP33-ubu9q2wLLtVIDl6yVclBCqA4YHbkbUPIOXT9wJ3omqEJpBLOGCVcE3uPQWeek6rngS3J9zN3F8HuPKevJJ4vbrZkx7JNWEhhILvtC0iNpY0gp4qh30U8m_tEU9KE5vdGlOX1oToPQpbniuTqlm2TNdoxmtj79MzIOigmghbs5clheffMYdbIeZ4vOR7RZu-D_c-UvK8KCMQ</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Yu, Haodong</creator><creator>Pu, Dingguo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101015</creationdate><title>Smoothing Newton method for NCP with the identification of degenerate indices</title><author>Yu, Haodong ; Pu, Dingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-77b362466b75578021f3dbe638ed9b3d592517e6a52ca25d63839eb8cdd679353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Convergence</topic><topic>Degenerate indices</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Global convergence</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Newton methods</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Nonlinear complementarity problems</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Regularity</topic><topic>Sciences and techniques of general use</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Strategy</topic><topic>Superlinear convergence</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Haodong</creatorcontrib><creatorcontrib>Pu, Dingguo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Haodong</au><au>Pu, Dingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smoothing Newton method for NCP with the identification of degenerate indices</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2010-10-15</date><risdate>2010</risdate><volume>234</volume><issue>12</issue><spage>3424</spage><epage>3435</epage><pages>3424-3435</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>We present a new smoothing Newton method for nonlinear complementarity problems (NCP(F)) by using an NCP function to reformulate the problem to its equivalent form. Compared with most current smoothing methods, our method contains an estimating technique based on the active-set strategy. This technique focuses on the identification of the degenerate set for a solution x ∗ of the NCP(F). The proposed method has the global convergence, each accumulation point is a solution of the problem. The introduction of the active-set strategy effectively reduces the scale of the problem. Under some regularity assumption, the degenerate set can be identified correctly near the solution and local superlinear convergence is obtained as well.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2010.05.004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2010-10, Vol.234 (12), p.3424-3435
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_760206369
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Convergence
Degenerate indices
Equivalence
Exact sciences and technology
Global analysis, analysis on manifolds
Global convergence
Mathematical analysis
Mathematical models
Mathematics
Newton methods
Nonlinear algebraic and transcendental equations
Nonlinear complementarity problems
Nonlinearity
Numerical analysis
Numerical analysis. Scientific computation
Regularity
Sciences and techniques of general use
Smoothing
Smoothing methods
Strategy
Superlinear convergence
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Smoothing Newton method for NCP with the identification of degenerate indices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smoothing%20Newton%20method%20for%20NCP%20with%20the%20identification%20of%20degenerate%20indices&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Yu,%20Haodong&rft.date=2010-10-15&rft.volume=234&rft.issue=12&rft.spage=3424&rft.epage=3435&rft.pages=3424-3435&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2010.05.004&rft_dat=%3Cproquest_cross%3E760206369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760206369&rft_id=info:pmid/&rft_els_id=S037704271000258X&rfr_iscdi=true