A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models

Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of wind engineering and industrial aerodynamics 2010-08, Vol.98 (8), p.472-481
Hauptverfasser: Hocaoğlu, Fatih Onur, Gerek, Ömer Nezih, Kurban, Mehmet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 8
container_start_page 472
container_title Journal of wind engineering and industrial aerodynamics
container_volume 98
creator Hocaoğlu, Fatih Onur
Gerek, Ömer Nezih
Kurban, Mehmet
description Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and variance. Such models lack the time variation properties and ignore cross-dependencies between other meteorological data. In this paper a procedure is developed to model the wind speed data using a dependent process of atmospheric pressure in the form of hidden Markov models (HMMs). Consequently, the inherent dependencies between the wind speed and pressure are exploited. HMMs relate the two quantities in a framework which eliminates the necessity of direct sample-wise correlations, and avoid direct time-series analysis complications of the stochastic wind speed data at a marginal expense of easy pressure measurements. The experimental data were obtained from recordings of hourly atmospheric pressure and wind speed values for two cities in Turkey, namely Izmir and Kayseri. Model details and numerical results are presented.
doi_str_mv 10.1016/j.jweia.2010.02.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760202929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167610510000255</els_id><sourcerecordid>760202929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-49258fc37bd1ec8664c32437c4963e6d5622cc309a625cf96fff037a2515b4833</originalsourceid><addsrcrecordid>eNp9kE1v2zAMhoVhA5a1_QW96DL05FQftmQfdgiKfRRosct2FhSKbpQ6lis6KfrvpzTFjj0RJJ73JfkydinFUgpprrfL7TNGv1SiTIRaCqE_sIVsrapa2dmPbFEoWxkpms_sC9FWCGFrqxcMV3xMBxz4cxwDpwkx8F0KOMTxgftpysnDhu_ptZ13iaYN5gh8yki0z8jTmjAf_BzTSNwXj00MAUd-7_NjOpy86Jx96v1AePFWz9jfH9__3Pyq7n7_vL1Z3VWgTTNXdaeatgdt10EitMbUoFWtLdSd0WhCY5QC0KLzRjXQd6bve6GtV41s1nWr9Rm7OvmWu5_2SLPbRQIcBj9i2pOzRiihOtUVUp9IyIkoY--mHHc-vzgp3DFTt3Wvmbpjpk4oVzItqq9v_p7AD332I0T6L1WqbYyxpnDfTlz5HQ8RsyOIOAKGmBFmF1J8d88_9eaOkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760202929</pqid></control><display><type>article</type><title>A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models</title><source>Elsevier ScienceDirect Journals</source><creator>Hocaoğlu, Fatih Onur ; Gerek, Ömer Nezih ; Kurban, Mehmet</creator><creatorcontrib>Hocaoğlu, Fatih Onur ; Gerek, Ömer Nezih ; Kurban, Mehmet</creatorcontrib><description>Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and variance. Such models lack the time variation properties and ignore cross-dependencies between other meteorological data. In this paper a procedure is developed to model the wind speed data using a dependent process of atmospheric pressure in the form of hidden Markov models (HMMs). Consequently, the inherent dependencies between the wind speed and pressure are exploited. HMMs relate the two quantities in a framework which eliminates the necessity of direct sample-wise correlations, and avoid direct time-series analysis complications of the stochastic wind speed data at a marginal expense of easy pressure measurements. The experimental data were obtained from recordings of hourly atmospheric pressure and wind speed values for two cities in Turkey, namely Izmir and Kayseri. Model details and numerical results are presented.</description><identifier>ISSN: 0167-6105</identifier><identifier>EISSN: 1872-8197</identifier><identifier>DOI: 10.1016/j.jweia.2010.02.003</identifier><identifier>CODEN: JWEAD6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Climatology and bioclimatics for buildings ; Computation methods. Tables. Charts ; Exact sciences and technology ; Hidden Markov models ; Markov process ; Structural analysis. Stresses ; Viterbi algorithm ; Wind speed modeling ; Wind/pressure dependencies</subject><ispartof>Journal of wind engineering and industrial aerodynamics, 2010-08, Vol.98 (8), p.472-481</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-49258fc37bd1ec8664c32437c4963e6d5622cc309a625cf96fff037a2515b4833</citedby><cites>FETCH-LOGICAL-c365t-49258fc37bd1ec8664c32437c4963e6d5622cc309a625cf96fff037a2515b4833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167610510000255$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22856676$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hocaoğlu, Fatih Onur</creatorcontrib><creatorcontrib>Gerek, Ömer Nezih</creatorcontrib><creatorcontrib>Kurban, Mehmet</creatorcontrib><title>A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models</title><title>Journal of wind engineering and industrial aerodynamics</title><description>Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and variance. Such models lack the time variation properties and ignore cross-dependencies between other meteorological data. In this paper a procedure is developed to model the wind speed data using a dependent process of atmospheric pressure in the form of hidden Markov models (HMMs). Consequently, the inherent dependencies between the wind speed and pressure are exploited. HMMs relate the two quantities in a framework which eliminates the necessity of direct sample-wise correlations, and avoid direct time-series analysis complications of the stochastic wind speed data at a marginal expense of easy pressure measurements. The experimental data were obtained from recordings of hourly atmospheric pressure and wind speed values for two cities in Turkey, namely Izmir and Kayseri. Model details and numerical results are presented.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Climatology and bioclimatics for buildings</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>Markov process</subject><subject>Structural analysis. Stresses</subject><subject>Viterbi algorithm</subject><subject>Wind speed modeling</subject><subject>Wind/pressure dependencies</subject><issn>0167-6105</issn><issn>1872-8197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v2zAMhoVhA5a1_QW96DL05FQftmQfdgiKfRRosct2FhSKbpQ6lis6KfrvpzTFjj0RJJ73JfkydinFUgpprrfL7TNGv1SiTIRaCqE_sIVsrapa2dmPbFEoWxkpms_sC9FWCGFrqxcMV3xMBxz4cxwDpwkx8F0KOMTxgftpysnDhu_ptZ13iaYN5gh8yki0z8jTmjAf_BzTSNwXj00MAUd-7_NjOpy86Jx96v1AePFWz9jfH9__3Pyq7n7_vL1Z3VWgTTNXdaeatgdt10EitMbUoFWtLdSd0WhCY5QC0KLzRjXQd6bve6GtV41s1nWr9Rm7OvmWu5_2SLPbRQIcBj9i2pOzRiihOtUVUp9IyIkoY--mHHc-vzgp3DFTt3Wvmbpjpk4oVzItqq9v_p7AD332I0T6L1WqbYyxpnDfTlz5HQ8RsyOIOAKGmBFmF1J8d88_9eaOkA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Hocaoğlu, Fatih Onur</creator><creator>Gerek, Ömer Nezih</creator><creator>Kurban, Mehmet</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20100801</creationdate><title>A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models</title><author>Hocaoğlu, Fatih Onur ; Gerek, Ömer Nezih ; Kurban, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-49258fc37bd1ec8664c32437c4963e6d5622cc309a625cf96fff037a2515b4833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Climatology and bioclimatics for buildings</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>Markov process</topic><topic>Structural analysis. Stresses</topic><topic>Viterbi algorithm</topic><topic>Wind speed modeling</topic><topic>Wind/pressure dependencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hocaoğlu, Fatih Onur</creatorcontrib><creatorcontrib>Gerek, Ömer Nezih</creatorcontrib><creatorcontrib>Kurban, Mehmet</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hocaoğlu, Fatih Onur</au><au>Gerek, Ömer Nezih</au><au>Kurban, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models</atitle><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>98</volume><issue>8</issue><spage>472</spage><epage>481</epage><pages>472-481</pages><issn>0167-6105</issn><eissn>1872-8197</eissn><coden>JWEAD6</coden><abstract>Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and variance. Such models lack the time variation properties and ignore cross-dependencies between other meteorological data. In this paper a procedure is developed to model the wind speed data using a dependent process of atmospheric pressure in the form of hidden Markov models (HMMs). Consequently, the inherent dependencies between the wind speed and pressure are exploited. HMMs relate the two quantities in a framework which eliminates the necessity of direct sample-wise correlations, and avoid direct time-series analysis complications of the stochastic wind speed data at a marginal expense of easy pressure measurements. The experimental data were obtained from recordings of hourly atmospheric pressure and wind speed values for two cities in Turkey, namely Izmir and Kayseri. Model details and numerical results are presented.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jweia.2010.02.003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6105
ispartof Journal of wind engineering and industrial aerodynamics, 2010-08, Vol.98 (8), p.472-481
issn 0167-6105
1872-8197
language eng
recordid cdi_proquest_miscellaneous_760202929
source Elsevier ScienceDirect Journals
subjects Applied sciences
Buildings. Public works
Climatology and bioclimatics for buildings
Computation methods. Tables. Charts
Exact sciences and technology
Hidden Markov models
Markov process
Structural analysis. Stresses
Viterbi algorithm
Wind speed modeling
Wind/pressure dependencies
title A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20wind%20speed%20modeling%20approach%20using%20atmospheric%20pressure%20observations%20and%20hidden%20Markov%20models&rft.jtitle=Journal%20of%20wind%20engineering%20and%20industrial%20aerodynamics&rft.au=Hocao%C4%9Flu,%20Fatih%20Onur&rft.date=2010-08-01&rft.volume=98&rft.issue=8&rft.spage=472&rft.epage=481&rft.pages=472-481&rft.issn=0167-6105&rft.eissn=1872-8197&rft.coden=JWEAD6&rft_id=info:doi/10.1016/j.jweia.2010.02.003&rft_dat=%3Cproquest_cross%3E760202929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760202929&rft_id=info:pmid/&rft_els_id=S0167610510000255&rfr_iscdi=true