A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models
Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and va...
Gespeichert in:
Veröffentlicht in: | Journal of wind engineering and industrial aerodynamics 2010-08, Vol.98 (8), p.472-481 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 8 |
container_start_page | 472 |
container_title | Journal of wind engineering and industrial aerodynamics |
container_volume | 98 |
creator | Hocaoğlu, Fatih Onur Gerek, Ömer Nezih Kurban, Mehmet |
description | Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and variance. Such models lack the time variation properties and ignore cross-dependencies between other meteorological data. In this paper a procedure is developed to model the wind speed data using a dependent process of atmospheric pressure in the form of hidden Markov models (HMMs). Consequently, the inherent dependencies between the wind speed and pressure are exploited. HMMs relate the two quantities in a framework which eliminates the necessity of direct sample-wise correlations, and avoid direct time-series analysis complications of the stochastic wind speed data at a marginal expense of easy pressure measurements. The experimental data were obtained from recordings of hourly atmospheric pressure and wind speed values for two cities in Turkey, namely Izmir and Kayseri. Model details and numerical results are presented. |
doi_str_mv | 10.1016/j.jweia.2010.02.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760202929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167610510000255</els_id><sourcerecordid>760202929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-49258fc37bd1ec8664c32437c4963e6d5622cc309a625cf96fff037a2515b4833</originalsourceid><addsrcrecordid>eNp9kE1v2zAMhoVhA5a1_QW96DL05FQftmQfdgiKfRRosct2FhSKbpQ6lis6KfrvpzTFjj0RJJ73JfkydinFUgpprrfL7TNGv1SiTIRaCqE_sIVsrapa2dmPbFEoWxkpms_sC9FWCGFrqxcMV3xMBxz4cxwDpwkx8F0KOMTxgftpysnDhu_ptZ13iaYN5gh8yki0z8jTmjAf_BzTSNwXj00MAUd-7_NjOpy86Jx96v1AePFWz9jfH9__3Pyq7n7_vL1Z3VWgTTNXdaeatgdt10EitMbUoFWtLdSd0WhCY5QC0KLzRjXQd6bve6GtV41s1nWr9Rm7OvmWu5_2SLPbRQIcBj9i2pOzRiihOtUVUp9IyIkoY--mHHc-vzgp3DFTt3Wvmbpjpk4oVzItqq9v_p7AD332I0T6L1WqbYyxpnDfTlz5HQ8RsyOIOAKGmBFmF1J8d88_9eaOkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760202929</pqid></control><display><type>article</type><title>A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models</title><source>Elsevier ScienceDirect Journals</source><creator>Hocaoğlu, Fatih Onur ; Gerek, Ömer Nezih ; Kurban, Mehmet</creator><creatorcontrib>Hocaoğlu, Fatih Onur ; Gerek, Ömer Nezih ; Kurban, Mehmet</creatorcontrib><description>Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and variance. Such models lack the time variation properties and ignore cross-dependencies between other meteorological data. In this paper a procedure is developed to model the wind speed data using a dependent process of atmospheric pressure in the form of hidden Markov models (HMMs). Consequently, the inherent dependencies between the wind speed and pressure are exploited. HMMs relate the two quantities in a framework which eliminates the necessity of direct sample-wise correlations, and avoid direct time-series analysis complications of the stochastic wind speed data at a marginal expense of easy pressure measurements. The experimental data were obtained from recordings of hourly atmospheric pressure and wind speed values for two cities in Turkey, namely Izmir and Kayseri. Model details and numerical results are presented.</description><identifier>ISSN: 0167-6105</identifier><identifier>EISSN: 1872-8197</identifier><identifier>DOI: 10.1016/j.jweia.2010.02.003</identifier><identifier>CODEN: JWEAD6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Climatology and bioclimatics for buildings ; Computation methods. Tables. Charts ; Exact sciences and technology ; Hidden Markov models ; Markov process ; Structural analysis. Stresses ; Viterbi algorithm ; Wind speed modeling ; Wind/pressure dependencies</subject><ispartof>Journal of wind engineering and industrial aerodynamics, 2010-08, Vol.98 (8), p.472-481</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-49258fc37bd1ec8664c32437c4963e6d5622cc309a625cf96fff037a2515b4833</citedby><cites>FETCH-LOGICAL-c365t-49258fc37bd1ec8664c32437c4963e6d5622cc309a625cf96fff037a2515b4833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167610510000255$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22856676$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hocaoğlu, Fatih Onur</creatorcontrib><creatorcontrib>Gerek, Ömer Nezih</creatorcontrib><creatorcontrib>Kurban, Mehmet</creatorcontrib><title>A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models</title><title>Journal of wind engineering and industrial aerodynamics</title><description>Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and variance. Such models lack the time variation properties and ignore cross-dependencies between other meteorological data. In this paper a procedure is developed to model the wind speed data using a dependent process of atmospheric pressure in the form of hidden Markov models (HMMs). Consequently, the inherent dependencies between the wind speed and pressure are exploited. HMMs relate the two quantities in a framework which eliminates the necessity of direct sample-wise correlations, and avoid direct time-series analysis complications of the stochastic wind speed data at a marginal expense of easy pressure measurements. The experimental data were obtained from recordings of hourly atmospheric pressure and wind speed values for two cities in Turkey, namely Izmir and Kayseri. Model details and numerical results are presented.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Climatology and bioclimatics for buildings</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>Markov process</subject><subject>Structural analysis. Stresses</subject><subject>Viterbi algorithm</subject><subject>Wind speed modeling</subject><subject>Wind/pressure dependencies</subject><issn>0167-6105</issn><issn>1872-8197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v2zAMhoVhA5a1_QW96DL05FQftmQfdgiKfRRosct2FhSKbpQ6lis6KfrvpzTFjj0RJJ73JfkydinFUgpprrfL7TNGv1SiTIRaCqE_sIVsrapa2dmPbFEoWxkpms_sC9FWCGFrqxcMV3xMBxz4cxwDpwkx8F0KOMTxgftpysnDhu_ptZ13iaYN5gh8yki0z8jTmjAf_BzTSNwXj00MAUd-7_NjOpy86Jx96v1AePFWz9jfH9__3Pyq7n7_vL1Z3VWgTTNXdaeatgdt10EitMbUoFWtLdSd0WhCY5QC0KLzRjXQd6bve6GtV41s1nWr9Rm7OvmWu5_2SLPbRQIcBj9i2pOzRiihOtUVUp9IyIkoY--mHHc-vzgp3DFTt3Wvmbpjpk4oVzItqq9v_p7AD332I0T6L1WqbYyxpnDfTlz5HQ8RsyOIOAKGmBFmF1J8d88_9eaOkA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Hocaoğlu, Fatih Onur</creator><creator>Gerek, Ömer Nezih</creator><creator>Kurban, Mehmet</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20100801</creationdate><title>A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models</title><author>Hocaoğlu, Fatih Onur ; Gerek, Ömer Nezih ; Kurban, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-49258fc37bd1ec8664c32437c4963e6d5622cc309a625cf96fff037a2515b4833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Climatology and bioclimatics for buildings</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>Markov process</topic><topic>Structural analysis. Stresses</topic><topic>Viterbi algorithm</topic><topic>Wind speed modeling</topic><topic>Wind/pressure dependencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hocaoğlu, Fatih Onur</creatorcontrib><creatorcontrib>Gerek, Ömer Nezih</creatorcontrib><creatorcontrib>Kurban, Mehmet</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hocaoğlu, Fatih Onur</au><au>Gerek, Ömer Nezih</au><au>Kurban, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models</atitle><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>98</volume><issue>8</issue><spage>472</spage><epage>481</epage><pages>472-481</pages><issn>0167-6105</issn><eissn>1872-8197</eissn><coden>JWEAD6</coden><abstract>Modeling the wind speed data has important implications in wind studies, providing valuable insight and parametric quantities for further engineering analysis. The classical modeling approach is to fit the probability distribution to a known model and estimate statistical parameters like mean and variance. Such models lack the time variation properties and ignore cross-dependencies between other meteorological data. In this paper a procedure is developed to model the wind speed data using a dependent process of atmospheric pressure in the form of hidden Markov models (HMMs). Consequently, the inherent dependencies between the wind speed and pressure are exploited. HMMs relate the two quantities in a framework which eliminates the necessity of direct sample-wise correlations, and avoid direct time-series analysis complications of the stochastic wind speed data at a marginal expense of easy pressure measurements. The experimental data were obtained from recordings of hourly atmospheric pressure and wind speed values for two cities in Turkey, namely Izmir and Kayseri. Model details and numerical results are presented.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jweia.2010.02.003</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6105 |
ispartof | Journal of wind engineering and industrial aerodynamics, 2010-08, Vol.98 (8), p.472-481 |
issn | 0167-6105 1872-8197 |
language | eng |
recordid | cdi_proquest_miscellaneous_760202929 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Buildings. Public works Climatology and bioclimatics for buildings Computation methods. Tables. Charts Exact sciences and technology Hidden Markov models Markov process Structural analysis. Stresses Viterbi algorithm Wind speed modeling Wind/pressure dependencies |
title | A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20wind%20speed%20modeling%20approach%20using%20atmospheric%20pressure%20observations%20and%20hidden%20Markov%20models&rft.jtitle=Journal%20of%20wind%20engineering%20and%20industrial%20aerodynamics&rft.au=Hocao%C4%9Flu,%20Fatih%20Onur&rft.date=2010-08-01&rft.volume=98&rft.issue=8&rft.spage=472&rft.epage=481&rft.pages=472-481&rft.issn=0167-6105&rft.eissn=1872-8197&rft.coden=JWEAD6&rft_id=info:doi/10.1016/j.jweia.2010.02.003&rft_dat=%3Cproquest_cross%3E760202929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760202929&rft_id=info:pmid/&rft_els_id=S0167610510000255&rfr_iscdi=true |