Strong and tunable nonlinear optomechanical coupling in a low-loss system
A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the f...
Gespeichert in:
Veröffentlicht in: | Nature physics 2010-09, Vol.6 (9), p.707-712 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 712 |
---|---|
container_issue | 9 |
container_start_page | 707 |
container_title | Nature physics |
container_volume | 6 |
creator | Sankey, J. C. Yang, C. Zwickl, B. M. Jayich, A. M. Harris, J. G. E. |
description | A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range
in situ
. In particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane’s mechanical energy.
An optical cavity coupled to a micrometre-sized mechanical resonator offers the opportunity to see quantum effects in relatively large structures. It is now shown that a variety of coupling mechanisms enable investigation of these fascinating systems in a number of different ways. |
doi_str_mv | 10.1038/nphys1707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760153182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>760153182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-4d9115080ba297786e0a655e8fee102fa1ce569862376b5038ed14da0b8b35583</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgCq6rB_9B8CIK1UzTNOlRxI-FBQ_quaTtdLdLmtSkRfbfG1lZQU8zMA_DzEvIObAbYFzd2mG9DSCZPCAzkJlI0kzB4b6X_JichLBhLEtz4DOyeB29syuqbUPHyerKILXOms6i9tQNo-uxXmvb1drQ2k1DnKxoZ6mmxn0mxoVAwzaM2J-So1abgGc_dU7eHx_e7p-T5cvT4v5umdQ85WOSNQWAYIpVOi2kVDkynQuBqkUElrYaahR5ofKUy7wS8SdsIGs0q1TFhVB8Ti53ewfvPiYMY9l3oUZjtEU3hVLmDAQHlUZ58Udu3ORtPK6UWSGBA2MRXe1Q7eMvHtty8F2v_bYEVn5HWu4jjfZ6Z0M0doX-d-F__AUBHXen</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749713100</pqid></control><display><type>article</type><title>Strong and tunable nonlinear optomechanical coupling in a low-loss system</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sankey, J. C. ; Yang, C. ; Zwickl, B. M. ; Jayich, A. M. ; Harris, J. G. E.</creator><creatorcontrib>Sankey, J. C. ; Yang, C. ; Zwickl, B. M. ; Jayich, A. M. ; Harris, J. G. E.</creatorcontrib><description>A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range
in situ
. In particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane’s mechanical energy.
An optical cavity coupled to a micrometre-sized mechanical resonator offers the opportunity to see quantum effects in relatively large structures. It is now shown that a variety of coupling mechanisms enable investigation of these fascinating systems in a number of different ways.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1707</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Control systems ; Couplings ; Degrees of freedom ; Devices ; Displacement ; Flexibility ; Holes ; Joining ; Mathematical analysis ; Mathematical and Computational Physics ; Membranes ; Molecular ; Nonlinear systems ; Optical and Plasma Physics ; Optics ; Physics ; Physics and Astronomy ; Quantum physics ; Theoretical</subject><ispartof>Nature physics, 2010-09, Vol.6 (9), p.707-712</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-4d9115080ba297786e0a655e8fee102fa1ce569862376b5038ed14da0b8b35583</citedby><cites>FETCH-LOGICAL-c323t-4d9115080ba297786e0a655e8fee102fa1ce569862376b5038ed14da0b8b35583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1707$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1707$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sankey, J. C.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Zwickl, B. M.</creatorcontrib><creatorcontrib>Jayich, A. M.</creatorcontrib><creatorcontrib>Harris, J. G. E.</creatorcontrib><title>Strong and tunable nonlinear optomechanical coupling in a low-loss system</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range
in situ
. In particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane’s mechanical energy.
An optical cavity coupled to a micrometre-sized mechanical resonator offers the opportunity to see quantum effects in relatively large structures. It is now shown that a variety of coupling mechanisms enable investigation of these fascinating systems in a number of different ways.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Control systems</subject><subject>Couplings</subject><subject>Degrees of freedom</subject><subject>Devices</subject><subject>Displacement</subject><subject>Flexibility</subject><subject>Holes</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Membranes</subject><subject>Molecular</subject><subject>Nonlinear systems</subject><subject>Optical and Plasma Physics</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1LxDAQBuAgCq6rB_9B8CIK1UzTNOlRxI-FBQ_quaTtdLdLmtSkRfbfG1lZQU8zMA_DzEvIObAbYFzd2mG9DSCZPCAzkJlI0kzB4b6X_JichLBhLEtz4DOyeB29syuqbUPHyerKILXOms6i9tQNo-uxXmvb1drQ2k1DnKxoZ6mmxn0mxoVAwzaM2J-So1abgGc_dU7eHx_e7p-T5cvT4v5umdQ85WOSNQWAYIpVOi2kVDkynQuBqkUElrYaahR5ofKUy7wS8SdsIGs0q1TFhVB8Ti53ewfvPiYMY9l3oUZjtEU3hVLmDAQHlUZ58Udu3ORtPK6UWSGBA2MRXe1Q7eMvHtty8F2v_bYEVn5HWu4jjfZ6Z0M0doX-d-F__AUBHXen</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Sankey, J. C.</creator><creator>Yang, C.</creator><creator>Zwickl, B. M.</creator><creator>Jayich, A. M.</creator><creator>Harris, J. G. E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Strong and tunable nonlinear optomechanical coupling in a low-loss system</title><author>Sankey, J. C. ; Yang, C. ; Zwickl, B. M. ; Jayich, A. M. ; Harris, J. G. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-4d9115080ba297786e0a655e8fee102fa1ce569862376b5038ed14da0b8b35583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Control systems</topic><topic>Couplings</topic><topic>Degrees of freedom</topic><topic>Devices</topic><topic>Displacement</topic><topic>Flexibility</topic><topic>Holes</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Membranes</topic><topic>Molecular</topic><topic>Nonlinear systems</topic><topic>Optical and Plasma Physics</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sankey, J. C.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Zwickl, B. M.</creatorcontrib><creatorcontrib>Jayich, A. M.</creatorcontrib><creatorcontrib>Harris, J. G. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sankey, J. C.</au><au>Yang, C.</au><au>Zwickl, B. M.</au><au>Jayich, A. M.</au><au>Harris, J. G. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong and tunable nonlinear optomechanical coupling in a low-loss system</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>6</volume><issue>9</issue><spage>707</spage><epage>712</epage><pages>707-712</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range
in situ
. In particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane’s mechanical energy.
An optical cavity coupled to a micrometre-sized mechanical resonator offers the opportunity to see quantum effects in relatively large structures. It is now shown that a variety of coupling mechanisms enable investigation of these fascinating systems in a number of different ways.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1707</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2010-09, Vol.6 (9), p.707-712 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_760153182 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Control systems Couplings Degrees of freedom Devices Displacement Flexibility Holes Joining Mathematical analysis Mathematical and Computational Physics Membranes Molecular Nonlinear systems Optical and Plasma Physics Optics Physics Physics and Astronomy Quantum physics Theoretical |
title | Strong and tunable nonlinear optomechanical coupling in a low-loss system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20and%20tunable%20nonlinear%20optomechanical%20coupling%20in%20a%20low-loss%20system&rft.jtitle=Nature%20physics&rft.au=Sankey,%20J.%20C.&rft.date=2010-09-01&rft.volume=6&rft.issue=9&rft.spage=707&rft.epage=712&rft.pages=707-712&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1707&rft_dat=%3Cproquest_cross%3E760153182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=749713100&rft_id=info:pmid/&rfr_iscdi=true |