Strong and tunable nonlinear optomechanical coupling in a low-loss system

A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2010-09, Vol.6 (9), p.707-712
Hauptverfasser: Sankey, J. C., Yang, C., Zwickl, B. M., Jayich, A. M., Harris, J. G. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 712
container_issue 9
container_start_page 707
container_title Nature physics
container_volume 6
creator Sankey, J. C.
Yang, C.
Zwickl, B. M.
Jayich, A. M.
Harris, J. G. E.
description A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range in situ . In particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane’s mechanical energy. An optical cavity coupled to a micrometre-sized mechanical resonator offers the opportunity to see quantum effects in relatively large structures. It is now shown that a variety of coupling mechanisms enable investigation of these fascinating systems in a number of different ways.
doi_str_mv 10.1038/nphys1707
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760153182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>760153182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-4d9115080ba297786e0a655e8fee102fa1ce569862376b5038ed14da0b8b35583</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgCq6rB_9B8CIK1UzTNOlRxI-FBQ_quaTtdLdLmtSkRfbfG1lZQU8zMA_DzEvIObAbYFzd2mG9DSCZPCAzkJlI0kzB4b6X_JichLBhLEtz4DOyeB29syuqbUPHyerKILXOms6i9tQNo-uxXmvb1drQ2k1DnKxoZ6mmxn0mxoVAwzaM2J-So1abgGc_dU7eHx_e7p-T5cvT4v5umdQ85WOSNQWAYIpVOi2kVDkynQuBqkUElrYaahR5ofKUy7wS8SdsIGs0q1TFhVB8Ti53ewfvPiYMY9l3oUZjtEU3hVLmDAQHlUZ58Udu3ORtPK6UWSGBA2MRXe1Q7eMvHtty8F2v_bYEVn5HWu4jjfZ6Z0M0doX-d-F__AUBHXen</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749713100</pqid></control><display><type>article</type><title>Strong and tunable nonlinear optomechanical coupling in a low-loss system</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sankey, J. C. ; Yang, C. ; Zwickl, B. M. ; Jayich, A. M. ; Harris, J. G. E.</creator><creatorcontrib>Sankey, J. C. ; Yang, C. ; Zwickl, B. M. ; Jayich, A. M. ; Harris, J. G. E.</creatorcontrib><description>A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range in situ . In particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane’s mechanical energy. An optical cavity coupled to a micrometre-sized mechanical resonator offers the opportunity to see quantum effects in relatively large structures. It is now shown that a variety of coupling mechanisms enable investigation of these fascinating systems in a number of different ways.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1707</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Control systems ; Couplings ; Degrees of freedom ; Devices ; Displacement ; Flexibility ; Holes ; Joining ; Mathematical analysis ; Mathematical and Computational Physics ; Membranes ; Molecular ; Nonlinear systems ; Optical and Plasma Physics ; Optics ; Physics ; Physics and Astronomy ; Quantum physics ; Theoretical</subject><ispartof>Nature physics, 2010-09, Vol.6 (9), p.707-712</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-4d9115080ba297786e0a655e8fee102fa1ce569862376b5038ed14da0b8b35583</citedby><cites>FETCH-LOGICAL-c323t-4d9115080ba297786e0a655e8fee102fa1ce569862376b5038ed14da0b8b35583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1707$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1707$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sankey, J. C.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Zwickl, B. M.</creatorcontrib><creatorcontrib>Jayich, A. M.</creatorcontrib><creatorcontrib>Harris, J. G. E.</creatorcontrib><title>Strong and tunable nonlinear optomechanical coupling in a low-loss system</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range in situ . In particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane’s mechanical energy. An optical cavity coupled to a micrometre-sized mechanical resonator offers the opportunity to see quantum effects in relatively large structures. It is now shown that a variety of coupling mechanisms enable investigation of these fascinating systems in a number of different ways.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Control systems</subject><subject>Couplings</subject><subject>Degrees of freedom</subject><subject>Devices</subject><subject>Displacement</subject><subject>Flexibility</subject><subject>Holes</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Membranes</subject><subject>Molecular</subject><subject>Nonlinear systems</subject><subject>Optical and Plasma Physics</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1LxDAQBuAgCq6rB_9B8CIK1UzTNOlRxI-FBQ_quaTtdLdLmtSkRfbfG1lZQU8zMA_DzEvIObAbYFzd2mG9DSCZPCAzkJlI0kzB4b6X_JichLBhLEtz4DOyeB29syuqbUPHyerKILXOms6i9tQNo-uxXmvb1drQ2k1DnKxoZ6mmxn0mxoVAwzaM2J-So1abgGc_dU7eHx_e7p-T5cvT4v5umdQ85WOSNQWAYIpVOi2kVDkynQuBqkUElrYaahR5ofKUy7wS8SdsIGs0q1TFhVB8Ti53ewfvPiYMY9l3oUZjtEU3hVLmDAQHlUZ58Udu3ORtPK6UWSGBA2MRXe1Q7eMvHtty8F2v_bYEVn5HWu4jjfZ6Z0M0doX-d-F__AUBHXen</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Sankey, J. C.</creator><creator>Yang, C.</creator><creator>Zwickl, B. M.</creator><creator>Jayich, A. M.</creator><creator>Harris, J. G. E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Strong and tunable nonlinear optomechanical coupling in a low-loss system</title><author>Sankey, J. C. ; Yang, C. ; Zwickl, B. M. ; Jayich, A. M. ; Harris, J. G. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-4d9115080ba297786e0a655e8fee102fa1ce569862376b5038ed14da0b8b35583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Control systems</topic><topic>Couplings</topic><topic>Degrees of freedom</topic><topic>Devices</topic><topic>Displacement</topic><topic>Flexibility</topic><topic>Holes</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Membranes</topic><topic>Molecular</topic><topic>Nonlinear systems</topic><topic>Optical and Plasma Physics</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sankey, J. C.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Zwickl, B. M.</creatorcontrib><creatorcontrib>Jayich, A. M.</creatorcontrib><creatorcontrib>Harris, J. G. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sankey, J. C.</au><au>Yang, C.</au><au>Zwickl, B. M.</au><au>Jayich, A. M.</au><au>Harris, J. G. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong and tunable nonlinear optomechanical coupling in a low-loss system</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>6</volume><issue>9</issue><spage>707</spage><epage>712</epage><pages>707-712</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range in situ . In particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane’s mechanical energy. An optical cavity coupled to a micrometre-sized mechanical resonator offers the opportunity to see quantum effects in relatively large structures. It is now shown that a variety of coupling mechanisms enable investigation of these fascinating systems in a number of different ways.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1707</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2010-09, Vol.6 (9), p.707-712
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_760153182
source Nature; SpringerLink Journals - AutoHoldings
subjects Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Control systems
Couplings
Degrees of freedom
Devices
Displacement
Flexibility
Holes
Joining
Mathematical analysis
Mathematical and Computational Physics
Membranes
Molecular
Nonlinear systems
Optical and Plasma Physics
Optics
Physics
Physics and Astronomy
Quantum physics
Theoretical
title Strong and tunable nonlinear optomechanical coupling in a low-loss system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20and%20tunable%20nonlinear%20optomechanical%20coupling%20in%20a%20low-loss%20system&rft.jtitle=Nature%20physics&rft.au=Sankey,%20J.%20C.&rft.date=2010-09-01&rft.volume=6&rft.issue=9&rft.spage=707&rft.epage=712&rft.pages=707-712&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1707&rft_dat=%3Cproquest_cross%3E760153182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=749713100&rft_id=info:pmid/&rfr_iscdi=true