Redox control of transcription : sensors, response regulators, activators and repressors
In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inap...
Gespeichert in:
Veröffentlicht in: | FEBS letters 1993-10, Vol.332 (3), p.203-207 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 3 |
container_start_page | 203 |
container_title | FEBS letters |
container_volume | 332 |
creator | ALLEN, J. F |
description | In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inappropriate ones, in response to altered availability of specific electron sources and sinks. In prokaryotic systems this control appears to operate by two general classes of mechanism: by two-component regulation involving protein phosphorylation on histidine and aspartate; and by direct oxidation-reduction of gene repressors or activators. For the first class, termed 'two-component redox regulation', the term 'redox sensor' is proposed for any electron carrier that becomes phosphorylated upon oxidation or reduction and thereby controls phosphorylation of specific response regulators, while the term 'redox response regulator' is proposed for the corresponding sequence-specific DNA-binding protein that controls transcription as a result of its phosphorylation by one or more redox sensors. For the second class of redox regulatory mechanism, the terms 'redox activator protein' and 'redox repressor protein' are proposed for single proteins containing both electron transfer and sequence-specific DNA-binding domains. The structure, function and biological distribution of these components are discussed. |
doi_str_mv | 10.1016/0014-5793(93)80631-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_75988445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75988445</sourcerecordid><originalsourceid>FETCH-LOGICAL-p198t-deda639469f79463f53cef931c754c65469bf9d7e85ec9ab7aeb5af2374abf783</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMo67r6DxT6IKJgNdncfZPFGywIouBbSdNEKt2kJqnovzeuZV99mTkz52MGDgCHCF4giNglhIiUlEt8KvGZgAyjkmyBKRIcl5gwsQ2mG2QX7MX4DvMskJyAiSCQEsqn4PXJNP6r0N6l4LvC2yIF5aIObZ9a74qrIhoXfYjnRTCx9y6aLN6GTqX1UunUfq51oVyTrT5jv_w-2LGqi-Zg7DPwcnvzvLgvl493D4vrZdkjKVLZmEYxLAmTlueKLcXaWImR5pRoRrNRW9lwI6jRUtVcmZoqO8ecqNpygWfg5O9uH_zHYGKqVm3UpuuUM36IFadSCELovyBigsw5hRk8GsGhXpmm6kO7UuG7GjPL_vHoq6hVZ3Neuo0bDOdvklL8AyYOfRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16842750</pqid></control><display><type>article</type><title>Redox control of transcription : sensors, response regulators, activators and repressors</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>ALLEN, J. F</creator><creatorcontrib>ALLEN, J. F</creatorcontrib><description>In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inappropriate ones, in response to altered availability of specific electron sources and sinks. In prokaryotic systems this control appears to operate by two general classes of mechanism: by two-component regulation involving protein phosphorylation on histidine and aspartate; and by direct oxidation-reduction of gene repressors or activators. For the first class, termed 'two-component redox regulation', the term 'redox sensor' is proposed for any electron carrier that becomes phosphorylated upon oxidation or reduction and thereby controls phosphorylation of specific response regulators, while the term 'redox response regulator' is proposed for the corresponding sequence-specific DNA-binding protein that controls transcription as a result of its phosphorylation by one or more redox sensors. For the second class of redox regulatory mechanism, the terms 'redox activator protein' and 'redox repressor protein' are proposed for single proteins containing both electron transfer and sequence-specific DNA-binding domains. The structure, function and biological distribution of these components are discussed.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/0014-5793(93)80631-4</identifier><identifier>PMID: 8405457</identifier><identifier>CODEN: FEBLAL</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Amino Acid Sequence ; Animals ; Biological and medical sciences ; Caenorhabditis elegans - genetics ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Gene Expression Regulation, Bacterial ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Oxidation-Reduction ; Repressor Proteins - metabolism ; Transcription, Genetic - physiology ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>FEBS letters, 1993-10, Vol.332 (3), p.203-207</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3844955$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8405457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ALLEN, J. F</creatorcontrib><title>Redox control of transcription : sensors, response regulators, activators and repressors</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inappropriate ones, in response to altered availability of specific electron sources and sinks. In prokaryotic systems this control appears to operate by two general classes of mechanism: by two-component regulation involving protein phosphorylation on histidine and aspartate; and by direct oxidation-reduction of gene repressors or activators. For the first class, termed 'two-component redox regulation', the term 'redox sensor' is proposed for any electron carrier that becomes phosphorylated upon oxidation or reduction and thereby controls phosphorylation of specific response regulators, while the term 'redox response regulator' is proposed for the corresponding sequence-specific DNA-binding protein that controls transcription as a result of its phosphorylation by one or more redox sensors. For the second class of redox regulatory mechanism, the terms 'redox activator protein' and 'redox repressor protein' are proposed for single proteins containing both electron transfer and sequence-specific DNA-binding domains. The structure, function and biological distribution of these components are discussed.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Oxidation-Reduction</subject><subject>Repressor Proteins - metabolism</subject><subject>Transcription, Genetic - physiology</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtLxDAQhYMo67r6DxT6IKJgNdncfZPFGywIouBbSdNEKt2kJqnovzeuZV99mTkz52MGDgCHCF4giNglhIiUlEt8KvGZgAyjkmyBKRIcl5gwsQ2mG2QX7MX4DvMskJyAiSCQEsqn4PXJNP6r0N6l4LvC2yIF5aIObZ9a74qrIhoXfYjnRTCx9y6aLN6GTqX1UunUfq51oVyTrT5jv_w-2LGqi-Zg7DPwcnvzvLgvl493D4vrZdkjKVLZmEYxLAmTlueKLcXaWImR5pRoRrNRW9lwI6jRUtVcmZoqO8ecqNpygWfg5O9uH_zHYGKqVm3UpuuUM36IFadSCELovyBigsw5hRk8GsGhXpmm6kO7UuG7GjPL_vHoq6hVZ3Neuo0bDOdvklL8AyYOfRg</recordid><startdate>19931018</startdate><enddate>19931018</enddate><creator>ALLEN, J. F</creator><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>19931018</creationdate><title>Redox control of transcription : sensors, response regulators, activators and repressors</title><author>ALLEN, J. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p198t-deda639469f79463f53cef931c754c65469bf9d7e85ec9ab7aeb5af2374abf783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Oxidation-Reduction</topic><topic>Repressor Proteins - metabolism</topic><topic>Transcription, Genetic - physiology</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALLEN, J. F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALLEN, J. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox control of transcription : sensors, response regulators, activators and repressors</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>1993-10-18</date><risdate>1993</risdate><volume>332</volume><issue>3</issue><spage>203</spage><epage>207</epage><pages>203-207</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><coden>FEBLAL</coden><abstract>In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inappropriate ones, in response to altered availability of specific electron sources and sinks. In prokaryotic systems this control appears to operate by two general classes of mechanism: by two-component regulation involving protein phosphorylation on histidine and aspartate; and by direct oxidation-reduction of gene repressors or activators. For the first class, termed 'two-component redox regulation', the term 'redox sensor' is proposed for any electron carrier that becomes phosphorylated upon oxidation or reduction and thereby controls phosphorylation of specific response regulators, while the term 'redox response regulator' is proposed for the corresponding sequence-specific DNA-binding protein that controls transcription as a result of its phosphorylation by one or more redox sensors. For the second class of redox regulatory mechanism, the terms 'redox activator protein' and 'redox repressor protein' are proposed for single proteins containing both electron transfer and sequence-specific DNA-binding domains. The structure, function and biological distribution of these components are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><pmid>8405457</pmid><doi>10.1016/0014-5793(93)80631-4</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-5793 |
ispartof | FEBS letters, 1993-10, Vol.332 (3), p.203-207 |
issn | 0014-5793 1873-3468 |
language | eng |
recordid | cdi_proquest_miscellaneous_75988445 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Animals Biological and medical sciences Caenorhabditis elegans - genetics Escherichia coli - genetics Escherichia coli - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation Gene Expression Regulation, Bacterial Molecular and cellular biology Molecular genetics Molecular Sequence Data Oxidation-Reduction Repressor Proteins - metabolism Transcription, Genetic - physiology Transcription. Transcription factor. Splicing. Rna processing |
title | Redox control of transcription : sensors, response regulators, activators and repressors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20control%20of%20transcription%20:%20sensors,%20response%20regulators,%20activators%20and%20repressors&rft.jtitle=FEBS%20letters&rft.au=ALLEN,%20J.%20F&rft.date=1993-10-18&rft.volume=332&rft.issue=3&rft.spage=203&rft.epage=207&rft.pages=203-207&rft.issn=0014-5793&rft.eissn=1873-3468&rft.coden=FEBLAL&rft_id=info:doi/10.1016/0014-5793(93)80631-4&rft_dat=%3Cproquest_pubme%3E75988445%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16842750&rft_id=info:pmid/8405457&rfr_iscdi=true |