Redox control of transcription : sensors, response regulators, activators and repressors

In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEBS letters 1993-10, Vol.332 (3), p.203-207
1. Verfasser: ALLEN, J. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 3
container_start_page 203
container_title FEBS letters
container_volume 332
creator ALLEN, J. F
description In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inappropriate ones, in response to altered availability of specific electron sources and sinks. In prokaryotic systems this control appears to operate by two general classes of mechanism: by two-component regulation involving protein phosphorylation on histidine and aspartate; and by direct oxidation-reduction of gene repressors or activators. For the first class, termed 'two-component redox regulation', the term 'redox sensor' is proposed for any electron carrier that becomes phosphorylated upon oxidation or reduction and thereby controls phosphorylation of specific response regulators, while the term 'redox response regulator' is proposed for the corresponding sequence-specific DNA-binding protein that controls transcription as a result of its phosphorylation by one or more redox sensors. For the second class of redox regulatory mechanism, the terms 'redox activator protein' and 'redox repressor protein' are proposed for single proteins containing both electron transfer and sequence-specific DNA-binding domains. The structure, function and biological distribution of these components are discussed.
doi_str_mv 10.1016/0014-5793(93)80631-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_75988445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75988445</sourcerecordid><originalsourceid>FETCH-LOGICAL-p198t-deda639469f79463f53cef931c754c65469bf9d7e85ec9ab7aeb5af2374abf783</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMo67r6DxT6IKJgNdncfZPFGywIouBbSdNEKt2kJqnovzeuZV99mTkz52MGDgCHCF4giNglhIiUlEt8KvGZgAyjkmyBKRIcl5gwsQ2mG2QX7MX4DvMskJyAiSCQEsqn4PXJNP6r0N6l4LvC2yIF5aIObZ9a74qrIhoXfYjnRTCx9y6aLN6GTqX1UunUfq51oVyTrT5jv_w-2LGqi-Zg7DPwcnvzvLgvl493D4vrZdkjKVLZmEYxLAmTlueKLcXaWImR5pRoRrNRW9lwI6jRUtVcmZoqO8ecqNpygWfg5O9uH_zHYGKqVm3UpuuUM36IFadSCELovyBigsw5hRk8GsGhXpmm6kO7UuG7GjPL_vHoq6hVZ3Neuo0bDOdvklL8AyYOfRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16842750</pqid></control><display><type>article</type><title>Redox control of transcription : sensors, response regulators, activators and repressors</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>ALLEN, J. F</creator><creatorcontrib>ALLEN, J. F</creatorcontrib><description>In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inappropriate ones, in response to altered availability of specific electron sources and sinks. In prokaryotic systems this control appears to operate by two general classes of mechanism: by two-component regulation involving protein phosphorylation on histidine and aspartate; and by direct oxidation-reduction of gene repressors or activators. For the first class, termed 'two-component redox regulation', the term 'redox sensor' is proposed for any electron carrier that becomes phosphorylated upon oxidation or reduction and thereby controls phosphorylation of specific response regulators, while the term 'redox response regulator' is proposed for the corresponding sequence-specific DNA-binding protein that controls transcription as a result of its phosphorylation by one or more redox sensors. For the second class of redox regulatory mechanism, the terms 'redox activator protein' and 'redox repressor protein' are proposed for single proteins containing both electron transfer and sequence-specific DNA-binding domains. The structure, function and biological distribution of these components are discussed.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/0014-5793(93)80631-4</identifier><identifier>PMID: 8405457</identifier><identifier>CODEN: FEBLAL</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Amino Acid Sequence ; Animals ; Biological and medical sciences ; Caenorhabditis elegans - genetics ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Gene Expression Regulation, Bacterial ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Oxidation-Reduction ; Repressor Proteins - metabolism ; Transcription, Genetic - physiology ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>FEBS letters, 1993-10, Vol.332 (3), p.203-207</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3844955$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8405457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ALLEN, J. F</creatorcontrib><title>Redox control of transcription : sensors, response regulators, activators and repressors</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inappropriate ones, in response to altered availability of specific electron sources and sinks. In prokaryotic systems this control appears to operate by two general classes of mechanism: by two-component regulation involving protein phosphorylation on histidine and aspartate; and by direct oxidation-reduction of gene repressors or activators. For the first class, termed 'two-component redox regulation', the term 'redox sensor' is proposed for any electron carrier that becomes phosphorylated upon oxidation or reduction and thereby controls phosphorylation of specific response regulators, while the term 'redox response regulator' is proposed for the corresponding sequence-specific DNA-binding protein that controls transcription as a result of its phosphorylation by one or more redox sensors. For the second class of redox regulatory mechanism, the terms 'redox activator protein' and 'redox repressor protein' are proposed for single proteins containing both electron transfer and sequence-specific DNA-binding domains. The structure, function and biological distribution of these components are discussed.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Oxidation-Reduction</subject><subject>Repressor Proteins - metabolism</subject><subject>Transcription, Genetic - physiology</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtLxDAQhYMo67r6DxT6IKJgNdncfZPFGywIouBbSdNEKt2kJqnovzeuZV99mTkz52MGDgCHCF4giNglhIiUlEt8KvGZgAyjkmyBKRIcl5gwsQ2mG2QX7MX4DvMskJyAiSCQEsqn4PXJNP6r0N6l4LvC2yIF5aIObZ9a74qrIhoXfYjnRTCx9y6aLN6GTqX1UunUfq51oVyTrT5jv_w-2LGqi-Zg7DPwcnvzvLgvl493D4vrZdkjKVLZmEYxLAmTlueKLcXaWImR5pRoRrNRW9lwI6jRUtVcmZoqO8ecqNpygWfg5O9uH_zHYGKqVm3UpuuUM36IFadSCELovyBigsw5hRk8GsGhXpmm6kO7UuG7GjPL_vHoq6hVZ3Neuo0bDOdvklL8AyYOfRg</recordid><startdate>19931018</startdate><enddate>19931018</enddate><creator>ALLEN, J. F</creator><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>19931018</creationdate><title>Redox control of transcription : sensors, response regulators, activators and repressors</title><author>ALLEN, J. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p198t-deda639469f79463f53cef931c754c65469bf9d7e85ec9ab7aeb5af2374abf783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Oxidation-Reduction</topic><topic>Repressor Proteins - metabolism</topic><topic>Transcription, Genetic - physiology</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALLEN, J. F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALLEN, J. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox control of transcription : sensors, response regulators, activators and repressors</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>1993-10-18</date><risdate>1993</risdate><volume>332</volume><issue>3</issue><spage>203</spage><epage>207</epage><pages>203-207</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><coden>FEBLAL</coden><abstract>In a growing number of cases, transcription of specific genes is known to be governed by oxidation or reduction of electron carriers with which the gene products interact. The biological function of such control is to activate synthesis of appropriate redox proteins, and to repress synthesis of inappropriate ones, in response to altered availability of specific electron sources and sinks. In prokaryotic systems this control appears to operate by two general classes of mechanism: by two-component regulation involving protein phosphorylation on histidine and aspartate; and by direct oxidation-reduction of gene repressors or activators. For the first class, termed 'two-component redox regulation', the term 'redox sensor' is proposed for any electron carrier that becomes phosphorylated upon oxidation or reduction and thereby controls phosphorylation of specific response regulators, while the term 'redox response regulator' is proposed for the corresponding sequence-specific DNA-binding protein that controls transcription as a result of its phosphorylation by one or more redox sensors. For the second class of redox regulatory mechanism, the terms 'redox activator protein' and 'redox repressor protein' are proposed for single proteins containing both electron transfer and sequence-specific DNA-binding domains. The structure, function and biological distribution of these components are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><pmid>8405457</pmid><doi>10.1016/0014-5793(93)80631-4</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-5793
ispartof FEBS letters, 1993-10, Vol.332 (3), p.203-207
issn 0014-5793
1873-3468
language eng
recordid cdi_proquest_miscellaneous_75988445
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Amino Acid Sequence
Animals
Biological and medical sciences
Caenorhabditis elegans - genetics
Escherichia coli - genetics
Escherichia coli - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation
Gene Expression Regulation, Bacterial
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Oxidation-Reduction
Repressor Proteins - metabolism
Transcription, Genetic - physiology
Transcription. Transcription factor. Splicing. Rna processing
title Redox control of transcription : sensors, response regulators, activators and repressors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20control%20of%20transcription%20:%20sensors,%20response%20regulators,%20activators%20and%20repressors&rft.jtitle=FEBS%20letters&rft.au=ALLEN,%20J.%20F&rft.date=1993-10-18&rft.volume=332&rft.issue=3&rft.spage=203&rft.epage=207&rft.pages=203-207&rft.issn=0014-5793&rft.eissn=1873-3468&rft.coden=FEBLAL&rft_id=info:doi/10.1016/0014-5793(93)80631-4&rft_dat=%3Cproquest_pubme%3E75988445%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16842750&rft_id=info:pmid/8405457&rfr_iscdi=true