Robustly measuring vascular reactivity differences with breath-hold: Normalising stimulus-evoked and resting state BOLD fMRI data

Inter-subject differences in local cerebral blood flow (CBF) and cerebral blood volume (CBV) contribute to differences in BOLD signal reactivity and, therefore, unmodelled variance in group level fMRI analyses. A simple way of elevating blood CO2 concentrations to characterise subject differences in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2011-01, Vol.54 (1), p.369-379
Hauptverfasser: Murphy, Kevin, Harris, Ashley D., Wise, Richard G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 1
container_start_page 369
container_title NeuroImage (Orlando, Fla.)
container_volume 54
creator Murphy, Kevin
Harris, Ashley D.
Wise, Richard G.
description Inter-subject differences in local cerebral blood flow (CBF) and cerebral blood volume (CBV) contribute to differences in BOLD signal reactivity and, therefore, unmodelled variance in group level fMRI analyses. A simple way of elevating blood CO2 concentrations to characterise subject differences in vascular reactivity is through breath-holds but two aspects of this measure are often neglected: (1) breath-holds are usually modelled as blocks even though CO2 accumulates over time and (2) increases in CO2 differ between subjects. This study demonstrates that the BOLD breath-hold response is best modelled by convolving the end-tidal CO2 trace with a standard haemodynamic response function and including its temporal derivative. Inclusion of the BOLD breath-hold response as a voxel-dependent covariate in a group level analysis increases the spatial extent of activation in stimulus evoked and resting state datasets. By expressing the BOLD breath-hold response as a percentage signal increase with respect to an absolute change in the partial pressure of CO2 (expressed in mmHg), the spatial extent of stimulus-evoked activation is further improved. This demonstrates that individual end-tidal CO2 increases to breath-hold should be accounted for to provide an accurate measure of vascular reactivity resulting in more statistically active voxels in group level analyses. ►BOLD breath-hold response is best modelled using HRF-convolved end-tidal CO2 traces. ►Correcting stimulus-evoked responses with breath-hold measures increases significance. ►Subject differences in CO2 increases during breath-hold should be taken into account. ►Breath-hold normalisation can increase the extent of resting state correlations.
doi_str_mv 10.1016/j.neuroimage.2010.07.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759877426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811910010323</els_id><sourcerecordid>759877426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-26a11fce73f1a9cccac6b326349d3519c422a252546fa9803d1597a6f600e75f3</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EoiXwF5AlDpw22F57veZGWwqVApUqOFuOPW4cdtfFXgfl2H-OQwpIXDjZmnnvzWg-hDAlS0po92a7nKCkGEZzC0tGapnIJRHqETqlRIlGCckeH_6ibXpK1Ql6lvOWEKIo75-iE0a6nrWCn6L7m7gueR72eASTSwrTLd6ZbMtgEk5g7Bx2Yd5jF7yHBJOFjH-EeYPXtTlvmk0c3Fv8OabRDCEf3HkOYxlKbmAXv4HDZnI1qFZ_9cwM-Ox6dYH9p5sr7MxsnqMn3gwZXjy8C_T18v2X84_N6vrD1fm7VWM5oXPDOkOptyBbT42y1hrbrVvWtVy5VlBlOWOGCSZ4543qSeuoUNJ0viMEpPDtAr0-5t6l-L3UhfQYsoVhMBPEkrUUqpeS18QFevWPchtLmupymgquFOsk51XVH1U2xZwTeH2XKpC015ToAyW91X8p6QMlTaSulKr15cOAsh7B_TH-xlIFZ0cB1IPsAiSdbTgc34UEdtYuhv9P-QnP1aoO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549926744</pqid></control><display><type>article</type><title>Robustly measuring vascular reactivity differences with breath-hold: Normalising stimulus-evoked and resting state BOLD fMRI data</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Murphy, Kevin ; Harris, Ashley D. ; Wise, Richard G.</creator><creatorcontrib>Murphy, Kevin ; Harris, Ashley D. ; Wise, Richard G.</creatorcontrib><description>Inter-subject differences in local cerebral blood flow (CBF) and cerebral blood volume (CBV) contribute to differences in BOLD signal reactivity and, therefore, unmodelled variance in group level fMRI analyses. A simple way of elevating blood CO2 concentrations to characterise subject differences in vascular reactivity is through breath-holds but two aspects of this measure are often neglected: (1) breath-holds are usually modelled as blocks even though CO2 accumulates over time and (2) increases in CO2 differ between subjects. This study demonstrates that the BOLD breath-hold response is best modelled by convolving the end-tidal CO2 trace with a standard haemodynamic response function and including its temporal derivative. Inclusion of the BOLD breath-hold response as a voxel-dependent covariate in a group level analysis increases the spatial extent of activation in stimulus evoked and resting state datasets. By expressing the BOLD breath-hold response as a percentage signal increase with respect to an absolute change in the partial pressure of CO2 (expressed in mmHg), the spatial extent of stimulus-evoked activation is further improved. This demonstrates that individual end-tidal CO2 increases to breath-hold should be accounted for to provide an accurate measure of vascular reactivity resulting in more statistically active voxels in group level analyses. ►BOLD breath-hold response is best modelled using HRF-convolved end-tidal CO2 traces. ►Correcting stimulus-evoked responses with breath-hold measures increases significance. ►Subject differences in CO2 increases during breath-hold should be taken into account. ►Breath-hold normalisation can increase the extent of resting state correlations.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2010.07.059</identifier><identifier>PMID: 20682354</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Analysis of Variance ; Blood Volume ; Brain ; Brain - physiology ; Brain Mapping ; Breath Tests ; Carbon dioxide ; Carbon Dioxide - blood ; Cerebrovascular Circulation - physiology ; Humans ; Magnetic Resonance Imaging - methods ; Maximal Voluntary Ventilation - physiology ; Medical imaging ; Oxygen - blood ; Regression Analysis ; Respiratory Mechanics - physiology ; Rest - physiology ; Tidal Volume</subject><ispartof>NeuroImage (Orlando, Fla.), 2011-01, Vol.54 (1), p.369-379</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-26a11fce73f1a9cccac6b326349d3519c422a252546fa9803d1597a6f600e75f3</citedby><cites>FETCH-LOGICAL-c401t-26a11fce73f1a9cccac6b326349d3519c422a252546fa9803d1597a6f600e75f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1549926744?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20682354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murphy, Kevin</creatorcontrib><creatorcontrib>Harris, Ashley D.</creatorcontrib><creatorcontrib>Wise, Richard G.</creatorcontrib><title>Robustly measuring vascular reactivity differences with breath-hold: Normalising stimulus-evoked and resting state BOLD fMRI data</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Inter-subject differences in local cerebral blood flow (CBF) and cerebral blood volume (CBV) contribute to differences in BOLD signal reactivity and, therefore, unmodelled variance in group level fMRI analyses. A simple way of elevating blood CO2 concentrations to characterise subject differences in vascular reactivity is through breath-holds but two aspects of this measure are often neglected: (1) breath-holds are usually modelled as blocks even though CO2 accumulates over time and (2) increases in CO2 differ between subjects. This study demonstrates that the BOLD breath-hold response is best modelled by convolving the end-tidal CO2 trace with a standard haemodynamic response function and including its temporal derivative. Inclusion of the BOLD breath-hold response as a voxel-dependent covariate in a group level analysis increases the spatial extent of activation in stimulus evoked and resting state datasets. By expressing the BOLD breath-hold response as a percentage signal increase with respect to an absolute change in the partial pressure of CO2 (expressed in mmHg), the spatial extent of stimulus-evoked activation is further improved. This demonstrates that individual end-tidal CO2 increases to breath-hold should be accounted for to provide an accurate measure of vascular reactivity resulting in more statistically active voxels in group level analyses. ►BOLD breath-hold response is best modelled using HRF-convolved end-tidal CO2 traces. ►Correcting stimulus-evoked responses with breath-hold measures increases significance. ►Subject differences in CO2 increases during breath-hold should be taken into account. ►Breath-hold normalisation can increase the extent of resting state correlations.</description><subject>Adult</subject><subject>Analysis of Variance</subject><subject>Blood Volume</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Breath Tests</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - blood</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Maximal Voluntary Ventilation - physiology</subject><subject>Medical imaging</subject><subject>Oxygen - blood</subject><subject>Regression Analysis</subject><subject>Respiratory Mechanics - physiology</subject><subject>Rest - physiology</subject><subject>Tidal Volume</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFvEzEQhS0EoiXwF5AlDpw22F57veZGWwqVApUqOFuOPW4cdtfFXgfl2H-OQwpIXDjZmnnvzWg-hDAlS0po92a7nKCkGEZzC0tGapnIJRHqETqlRIlGCckeH_6ibXpK1Ql6lvOWEKIo75-iE0a6nrWCn6L7m7gueR72eASTSwrTLd6ZbMtgEk5g7Bx2Yd5jF7yHBJOFjH-EeYPXtTlvmk0c3Fv8OabRDCEf3HkOYxlKbmAXv4HDZnI1qFZ_9cwM-Ox6dYH9p5sr7MxsnqMn3gwZXjy8C_T18v2X84_N6vrD1fm7VWM5oXPDOkOptyBbT42y1hrbrVvWtVy5VlBlOWOGCSZ4543qSeuoUNJ0viMEpPDtAr0-5t6l-L3UhfQYsoVhMBPEkrUUqpeS18QFevWPchtLmupymgquFOsk51XVH1U2xZwTeH2XKpC015ToAyW91X8p6QMlTaSulKr15cOAsh7B_TH-xlIFZ0cB1IPsAiSdbTgc34UEdtYuhv9P-QnP1aoO</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Murphy, Kevin</creator><creator>Harris, Ashley D.</creator><creator>Wise, Richard G.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20110101</creationdate><title>Robustly measuring vascular reactivity differences with breath-hold: Normalising stimulus-evoked and resting state BOLD fMRI data</title><author>Murphy, Kevin ; Harris, Ashley D. ; Wise, Richard G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-26a11fce73f1a9cccac6b326349d3519c422a252546fa9803d1597a6f600e75f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Analysis of Variance</topic><topic>Blood Volume</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Breath Tests</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - blood</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Maximal Voluntary Ventilation - physiology</topic><topic>Medical imaging</topic><topic>Oxygen - blood</topic><topic>Regression Analysis</topic><topic>Respiratory Mechanics - physiology</topic><topic>Rest - physiology</topic><topic>Tidal Volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Kevin</creatorcontrib><creatorcontrib>Harris, Ashley D.</creatorcontrib><creatorcontrib>Wise, Richard G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Kevin</au><au>Harris, Ashley D.</au><au>Wise, Richard G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustly measuring vascular reactivity differences with breath-hold: Normalising stimulus-evoked and resting state BOLD fMRI data</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>54</volume><issue>1</issue><spage>369</spage><epage>379</epage><pages>369-379</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Inter-subject differences in local cerebral blood flow (CBF) and cerebral blood volume (CBV) contribute to differences in BOLD signal reactivity and, therefore, unmodelled variance in group level fMRI analyses. A simple way of elevating blood CO2 concentrations to characterise subject differences in vascular reactivity is through breath-holds but two aspects of this measure are often neglected: (1) breath-holds are usually modelled as blocks even though CO2 accumulates over time and (2) increases in CO2 differ between subjects. This study demonstrates that the BOLD breath-hold response is best modelled by convolving the end-tidal CO2 trace with a standard haemodynamic response function and including its temporal derivative. Inclusion of the BOLD breath-hold response as a voxel-dependent covariate in a group level analysis increases the spatial extent of activation in stimulus evoked and resting state datasets. By expressing the BOLD breath-hold response as a percentage signal increase with respect to an absolute change in the partial pressure of CO2 (expressed in mmHg), the spatial extent of stimulus-evoked activation is further improved. This demonstrates that individual end-tidal CO2 increases to breath-hold should be accounted for to provide an accurate measure of vascular reactivity resulting in more statistically active voxels in group level analyses. ►BOLD breath-hold response is best modelled using HRF-convolved end-tidal CO2 traces. ►Correcting stimulus-evoked responses with breath-hold measures increases significance. ►Subject differences in CO2 increases during breath-hold should be taken into account. ►Breath-hold normalisation can increase the extent of resting state correlations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20682354</pmid><doi>10.1016/j.neuroimage.2010.07.059</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2011-01, Vol.54 (1), p.369-379
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_759877426
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Adult
Analysis of Variance
Blood Volume
Brain
Brain - physiology
Brain Mapping
Breath Tests
Carbon dioxide
Carbon Dioxide - blood
Cerebrovascular Circulation - physiology
Humans
Magnetic Resonance Imaging - methods
Maximal Voluntary Ventilation - physiology
Medical imaging
Oxygen - blood
Regression Analysis
Respiratory Mechanics - physiology
Rest - physiology
Tidal Volume
title Robustly measuring vascular reactivity differences with breath-hold: Normalising stimulus-evoked and resting state BOLD fMRI data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustly%20measuring%20vascular%20reactivity%20differences%20with%20breath-hold:%20Normalising%20stimulus-evoked%20and%20resting%20state%20BOLD%20fMRI%20data&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Murphy,%20Kevin&rft.date=2011-01-01&rft.volume=54&rft.issue=1&rft.spage=369&rft.epage=379&rft.pages=369-379&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2010.07.059&rft_dat=%3Cproquest_cross%3E759877426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549926744&rft_id=info:pmid/20682354&rft_els_id=S1053811910010323&rfr_iscdi=true