Ca2+ and Segment Length Dependence of Isometric Force Kinetics in Intact Ferret Cardiac Muscle
The influence of Ca and sarcomere length on myocardial crossbridge kinetics was studied in ferret papillary muscle by measuring the rate of force redevelopment following a rapid length step that dropped the force to zero. Tetanic stimulation with 5 μmol/L ryanodine was used to obtain a steady-state...
Gespeichert in:
Veröffentlicht in: | Circulation research 1993-10, Vol.73 (4), p.603-611 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influence of Ca and sarcomere length on myocardial crossbridge kinetics was studied in ferret papillary muscle by measuring the rate of force redevelopment following a rapid length step that dropped the force to zero. Tetanic stimulation with 5 μmol/L ryanodine was used to obtain a steady-state contraction, and segment length was measured and controlled using a sense-coil technique that measures changes in the cross-sectional area of the central region of the muscle. The rate constant for the recovery of force (ktr) following a rapid length release was obtained by fitting the data with a single exponential function. Contrary to results from skinned skeletal fibers in which ktr increases almost 10-fold from low to maximal activation levels, ktr was found not to increase at higher activation levels in this study. Similarly, although force increased with segment length under all conditions, ktr never increased with length. Data presented here are consistent with a model of myocardial Ca activation in which Ca modulates the number of crossbridges interacting with the thin filament and are inconsistent with a model in which Ca modulates the kinetics of transitions to force producing states within the actomyosin cycle. Differences in the activation dependence of the force redevelopment rate between cardiac and skeletal muscle suggest that there are fundamental differences in the mechanism of Ca activation between these two muscle types. |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/01.RES.73.4.603 |