Simultaneous multi-site EPR spectroscopy in vivo

A gradient technique to measure electron paramagnetic resonance spectra simultaneously at several different locations is described. The technique is based on the use of point probes containing paramagnetic centers. The value of the magnetic field gradient is chosen to be sufficient to separate the E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 1993-08, Vol.30 (2), p.213-220
Hauptverfasser: Smirnov, Alex I., Norby, Shong-Wan, Clarkson, R. B., Walczak, Ted, Swartz, Harold M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 2
container_start_page 213
container_title Magnetic resonance in medicine
container_volume 30
creator Smirnov, Alex I.
Norby, Shong-Wan
Clarkson, R. B.
Walczak, Ted
Swartz, Harold M.
description A gradient technique to measure electron paramagnetic resonance spectra simultaneously at several different locations is described. The technique is based on the use of point probes containing paramagnetic centers. The value of the magnetic field gradient is chosen to be sufficient to separate the EPR signals from the different paramagnetic probes yet at the same time small enough to change only minimally the shape of individual signals. The conditions to apply this technique are considered in detail. When experimental data have a high signal‐to‐noise ratio, the lineshape distortion induced by the gradient can be corrected with the aid of a known distribution function of paramagnetic centers within the probe. The maximum entropy deconvolution algorithm is successfully applied for the correction of significantly distorted lines. The technique is experimentally tested and applied to measure the concentration of oxygen in hypertrophied rat myocardium and normal rat kidney in vivo by low frequency EPR (L‐band, 1.2 GHz). No types of EPR oxygen‐sensitive probes‐lithium phthalocyanine crystals and synthetic carbohydrate chars‐were used.
doi_str_mv 10.1002/mrm.1910300210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75937432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75937432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-4ea9c793b672b57bf441ef6e9acbbe3b048f347e536362b394ba14c58a6665ba3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EKqWwsiFlQGwp_nY8IlQKUstHC2K0bONIhqQJcVLof0-qREVMTHen-727pwfAKYJjBCG-zKt8jCSCpB0Q3ANDxDCOMZN0HwyhoDAmSNJDcBTCO4RQSkEHYJAQyZGEQwCXPm-yWq9c0YRo2_o4-NpFk8dFFEpn66oItig3kV9Fa78ujsFBqrPgTvo6Ai83k-fr23j2ML27vprFliQJjKnT0gpJDBfYMGFSSpFLuZPaGuOIgTRJCRWOEU44NkRSoxG1LNGcc2Y0GYGL7m5ZFZ-NC7XKfbAuyzqrSjBJBCW4BccdaFunoXKpKiuf62qjEFTbiFQbkfqNqBWc9Zcbk7u3Hd5n0u7P-70OVmdppVfWhx1GE8wlYS0mO-zLZ27zz1M1X8z_WIg7rQ-1-95pdfWhuCCCqdf7qRJ4idgTpgqTH8_rjN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75937432</pqid></control><display><type>article</type><title>Simultaneous multi-site EPR spectroscopy in vivo</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Smirnov, Alex I. ; Norby, Shong-Wan ; Clarkson, R. B. ; Walczak, Ted ; Swartz, Harold M.</creator><creatorcontrib>Smirnov, Alex I. ; Norby, Shong-Wan ; Clarkson, R. B. ; Walczak, Ted ; Swartz, Harold M.</creatorcontrib><description>A gradient technique to measure electron paramagnetic resonance spectra simultaneously at several different locations is described. The technique is based on the use of point probes containing paramagnetic centers. The value of the magnetic field gradient is chosen to be sufficient to separate the EPR signals from the different paramagnetic probes yet at the same time small enough to change only minimally the shape of individual signals. The conditions to apply this technique are considered in detail. When experimental data have a high signal‐to‐noise ratio, the lineshape distortion induced by the gradient can be corrected with the aid of a known distribution function of paramagnetic centers within the probe. The maximum entropy deconvolution algorithm is successfully applied for the correction of significantly distorted lines. The technique is experimentally tested and applied to measure the concentration of oxygen in hypertrophied rat myocardium and normal rat kidney in vivo by low frequency EPR (L‐band, 1.2 GHz). No types of EPR oxygen‐sensitive probes‐lithium phthalocyanine crystals and synthetic carbohydrate chars‐were used.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.1910300210</identifier><identifier>PMID: 8396190</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Baltimore: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; carbonaceous materials ; Cardiomegaly - metabolism ; electron paramagnetic resonance ; Electron Spin Resonance Spectroscopy - methods ; Female ; Investigative techniques, diagnostic techniques (general aspects) ; Kidney - metabolism ; Medical sciences ; Miscellaneous. Technology ; myocardium ; oximetry ; Oxygen - analysis ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Rats ; Rats, Sprague-Dawley</subject><ispartof>Magnetic resonance in medicine, 1993-08, Vol.30 (2), p.213-220</ispartof><rights>Copyright © 1993 Wiley‐Liss, Inc., A Wiley Company</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-4ea9c793b672b57bf441ef6e9acbbe3b048f347e536362b394ba14c58a6665ba3</citedby><cites>FETCH-LOGICAL-c3880-4ea9c793b672b57bf441ef6e9acbbe3b048f347e536362b394ba14c58a6665ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.1910300210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.1910300210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4826935$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8396190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smirnov, Alex I.</creatorcontrib><creatorcontrib>Norby, Shong-Wan</creatorcontrib><creatorcontrib>Clarkson, R. B.</creatorcontrib><creatorcontrib>Walczak, Ted</creatorcontrib><creatorcontrib>Swartz, Harold M.</creatorcontrib><title>Simultaneous multi-site EPR spectroscopy in vivo</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>A gradient technique to measure electron paramagnetic resonance spectra simultaneously at several different locations is described. The technique is based on the use of point probes containing paramagnetic centers. The value of the magnetic field gradient is chosen to be sufficient to separate the EPR signals from the different paramagnetic probes yet at the same time small enough to change only minimally the shape of individual signals. The conditions to apply this technique are considered in detail. When experimental data have a high signal‐to‐noise ratio, the lineshape distortion induced by the gradient can be corrected with the aid of a known distribution function of paramagnetic centers within the probe. The maximum entropy deconvolution algorithm is successfully applied for the correction of significantly distorted lines. The technique is experimentally tested and applied to measure the concentration of oxygen in hypertrophied rat myocardium and normal rat kidney in vivo by low frequency EPR (L‐band, 1.2 GHz). No types of EPR oxygen‐sensitive probes‐lithium phthalocyanine crystals and synthetic carbohydrate chars‐were used.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>carbonaceous materials</subject><subject>Cardiomegaly - metabolism</subject><subject>electron paramagnetic resonance</subject><subject>Electron Spin Resonance Spectroscopy - methods</subject><subject>Female</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Kidney - metabolism</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>myocardium</subject><subject>oximetry</subject><subject>Oxygen - analysis</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1PwzAQxS0EKqWwsiFlQGwp_nY8IlQKUstHC2K0bONIhqQJcVLof0-qREVMTHen-727pwfAKYJjBCG-zKt8jCSCpB0Q3ANDxDCOMZN0HwyhoDAmSNJDcBTCO4RQSkEHYJAQyZGEQwCXPm-yWq9c0YRo2_o4-NpFk8dFFEpn66oItig3kV9Fa78ujsFBqrPgTvo6Ai83k-fr23j2ML27vprFliQJjKnT0gpJDBfYMGFSSpFLuZPaGuOIgTRJCRWOEU44NkRSoxG1LNGcc2Y0GYGL7m5ZFZ-NC7XKfbAuyzqrSjBJBCW4BccdaFunoXKpKiuf62qjEFTbiFQbkfqNqBWc9Zcbk7u3Hd5n0u7P-70OVmdppVfWhx1GE8wlYS0mO-zLZ27zz1M1X8z_WIg7rQ-1-95pdfWhuCCCqdf7qRJ4idgTpgqTH8_rjN0</recordid><startdate>199308</startdate><enddate>199308</enddate><creator>Smirnov, Alex I.</creator><creator>Norby, Shong-Wan</creator><creator>Clarkson, R. B.</creator><creator>Walczak, Ted</creator><creator>Swartz, Harold M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Williams &amp; Wilkins</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199308</creationdate><title>Simultaneous multi-site EPR spectroscopy in vivo</title><author>Smirnov, Alex I. ; Norby, Shong-Wan ; Clarkson, R. B. ; Walczak, Ted ; Swartz, Harold M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-4ea9c793b672b57bf441ef6e9acbbe3b048f347e536362b394ba14c58a6665ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>carbonaceous materials</topic><topic>Cardiomegaly - metabolism</topic><topic>electron paramagnetic resonance</topic><topic>Electron Spin Resonance Spectroscopy - methods</topic><topic>Female</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Kidney - metabolism</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>myocardium</topic><topic>oximetry</topic><topic>Oxygen - analysis</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Alex I.</creatorcontrib><creatorcontrib>Norby, Shong-Wan</creatorcontrib><creatorcontrib>Clarkson, R. B.</creatorcontrib><creatorcontrib>Walczak, Ted</creatorcontrib><creatorcontrib>Swartz, Harold M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Alex I.</au><au>Norby, Shong-Wan</au><au>Clarkson, R. B.</au><au>Walczak, Ted</au><au>Swartz, Harold M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous multi-site EPR spectroscopy in vivo</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>1993-08</date><risdate>1993</risdate><volume>30</volume><issue>2</issue><spage>213</spage><epage>220</epage><pages>213-220</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>A gradient technique to measure electron paramagnetic resonance spectra simultaneously at several different locations is described. The technique is based on the use of point probes containing paramagnetic centers. The value of the magnetic field gradient is chosen to be sufficient to separate the EPR signals from the different paramagnetic probes yet at the same time small enough to change only minimally the shape of individual signals. The conditions to apply this technique are considered in detail. When experimental data have a high signal‐to‐noise ratio, the lineshape distortion induced by the gradient can be corrected with the aid of a known distribution function of paramagnetic centers within the probe. The maximum entropy deconvolution algorithm is successfully applied for the correction of significantly distorted lines. The technique is experimentally tested and applied to measure the concentration of oxygen in hypertrophied rat myocardium and normal rat kidney in vivo by low frequency EPR (L‐band, 1.2 GHz). No types of EPR oxygen‐sensitive probes‐lithium phthalocyanine crystals and synthetic carbohydrate chars‐were used.</abstract><cop>Baltimore</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8396190</pmid><doi>10.1002/mrm.1910300210</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 1993-08, Vol.30 (2), p.213-220
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_75937432
source MEDLINE; Wiley Journals
subjects Animals
Biological and medical sciences
carbonaceous materials
Cardiomegaly - metabolism
electron paramagnetic resonance
Electron Spin Resonance Spectroscopy - methods
Female
Investigative techniques, diagnostic techniques (general aspects)
Kidney - metabolism
Medical sciences
Miscellaneous. Technology
myocardium
oximetry
Oxygen - analysis
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Rats
Rats, Sprague-Dawley
title Simultaneous multi-site EPR spectroscopy in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20multi-site%20EPR%20spectroscopy%20in%20vivo&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Smirnov,%20Alex%20I.&rft.date=1993-08&rft.volume=30&rft.issue=2&rft.spage=213&rft.epage=220&rft.pages=213-220&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.1910300210&rft_dat=%3Cproquest_cross%3E75937432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75937432&rft_id=info:pmid/8396190&rfr_iscdi=true