Rational assignment of key motifs for function guides in silico enzyme identification

The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 ( R )-selective amine transaminases. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2010-11, Vol.6 (11), p.807-813
Hauptverfasser: Bornscheuer, Uwe T, Höhne, Matthias, Schätzle, Sebastian, Jochens, Helge, Robins, Karen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue 11
container_start_page 807
container_title Nature chemical biology
container_volume 6
creator Bornscheuer, Uwe T
Höhne, Matthias
Schätzle, Sebastian
Jochens, Helge
Robins, Karen
description The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 ( R )-selective amine transaminases. Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an in silico strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 ( R )-selective amine transaminases, which catalyzed the synthesis of several ( R )-amines with excellent optical purity up to >99% enantiomeric excess.
doi_str_mv 10.1038/nchembio.447
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759325176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167478631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a76ca0fdafdecaaac70811a8cae4d874dfea6eb20e6d061743e16fc4fccaaaf03</originalsourceid><addsrcrecordid>eNp10M1PwyAYBnBiNG5Ob54N8eLFKrRAu6NZ_EqWmBh3bhh9mcwWJrSH-dfLPo0mniDwy8PLg9A5JTeUZMWtVe_QTI27YSw_QH3KeZowJoaH-z0nPXQSwpyQTAhaHKNeSoqc8uGwjyavsjXOyhrLEMzMNmBb7DT-gCVuXGt0wNp5rDurVg7POlNBwMbiYGqjHAb7tWwAx1MbtVHruFN0pGUd4Gy7DtDk4f5t9JSMXx6fR3fjRDFWtInMhZJEV1JXoKSUKicFpbJQElhV5KzSIAVMUwKiIoLmLAMqtGJarbQm2QBdbXIX3n12ENqyMUFBXUsLrgtlzodZymkuorz8I-eu8_Hfa0S5SFMe0fUGKe9C8KDLhTeN9MuSknJVdrkru4xlR36xzeymDVR7vGs3gmQDQryyM_A_j_4TuB3SyrbzsA_8hb4BdHubQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759156225</pqid></control><display><type>article</type><title>Rational assignment of key motifs for function guides in silico enzyme identification</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bornscheuer, Uwe T ; Höhne, Matthias ; Schätzle, Sebastian ; Jochens, Helge ; Robins, Karen</creator><creatorcontrib>Bornscheuer, Uwe T ; Höhne, Matthias ; Schätzle, Sebastian ; Jochens, Helge ; Robins, Karen</creatorcontrib><description>The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 ( R )-selective amine transaminases. Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an in silico strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 ( R )-selective amine transaminases, which catalyzed the synthesis of several ( R )-amines with excellent optical purity up to &gt;99% enantiomeric excess.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.447</identifier><identifier>PMID: 20871599</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/553/1886 ; 631/92/469 ; 639/638/77/883 ; Algorithms ; Amines ; Amino Acid Motifs ; Amino Acid Sequence ; Amino acids ; Bacteria - enzymology ; Biocatalysis ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Catalysis ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Computational Biology - methods ; Databases, Protein ; Enzymes ; Glutamic Acid - chemistry ; Glutamic Acid - metabolism ; Ketoglutaric Acids - chemistry ; Ketoglutaric Acids - metabolism ; Molecular Sequence Data ; Mutation ; Proteins ; Pyruvic Acid - chemistry ; Pyruvic Acid - metabolism ; Sequence Alignment ; Stereoisomerism ; Structure-Activity Relationship ; Substrate Specificity ; Transaminases - analysis ; Transaminases - chemistry ; Transaminases - classification ; Transaminases - metabolism</subject><ispartof>Nature chemical biology, 2010-11, Vol.6 (11), p.807-813</ispartof><rights>Springer Nature America, Inc. 2010</rights><rights>Copyright Nature Publishing Group Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a76ca0fdafdecaaac70811a8cae4d874dfea6eb20e6d061743e16fc4fccaaaf03</citedby><cites>FETCH-LOGICAL-c448t-a76ca0fdafdecaaac70811a8cae4d874dfea6eb20e6d061743e16fc4fccaaaf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.447$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.447$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20871599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bornscheuer, Uwe T</creatorcontrib><creatorcontrib>Höhne, Matthias</creatorcontrib><creatorcontrib>Schätzle, Sebastian</creatorcontrib><creatorcontrib>Jochens, Helge</creatorcontrib><creatorcontrib>Robins, Karen</creatorcontrib><title>Rational assignment of key motifs for function guides in silico enzyme identification</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 ( R )-selective amine transaminases. Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an in silico strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 ( R )-selective amine transaminases, which catalyzed the synthesis of several ( R )-amines with excellent optical purity up to &gt;99% enantiomeric excess.</description><subject>631/553/1886</subject><subject>631/92/469</subject><subject>639/638/77/883</subject><subject>Algorithms</subject><subject>Amines</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Bacteria - enzymology</subject><subject>Biocatalysis</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Enzymes</subject><subject>Glutamic Acid - chemistry</subject><subject>Glutamic Acid - metabolism</subject><subject>Ketoglutaric Acids - chemistry</subject><subject>Ketoglutaric Acids - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Pyruvic Acid - chemistry</subject><subject>Pyruvic Acid - metabolism</subject><subject>Sequence Alignment</subject><subject>Stereoisomerism</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Transaminases - analysis</subject><subject>Transaminases - chemistry</subject><subject>Transaminases - classification</subject><subject>Transaminases - metabolism</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10M1PwyAYBnBiNG5Ob54N8eLFKrRAu6NZ_EqWmBh3bhh9mcwWJrSH-dfLPo0mniDwy8PLg9A5JTeUZMWtVe_QTI27YSw_QH3KeZowJoaH-z0nPXQSwpyQTAhaHKNeSoqc8uGwjyavsjXOyhrLEMzMNmBb7DT-gCVuXGt0wNp5rDurVg7POlNBwMbiYGqjHAb7tWwAx1MbtVHruFN0pGUd4Gy7DtDk4f5t9JSMXx6fR3fjRDFWtInMhZJEV1JXoKSUKicFpbJQElhV5KzSIAVMUwKiIoLmLAMqtGJarbQm2QBdbXIX3n12ENqyMUFBXUsLrgtlzodZymkuorz8I-eu8_Hfa0S5SFMe0fUGKe9C8KDLhTeN9MuSknJVdrkru4xlR36xzeymDVR7vGs3gmQDQryyM_A_j_4TuB3SyrbzsA_8hb4BdHubQw</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Bornscheuer, Uwe T</creator><creator>Höhne, Matthias</creator><creator>Schätzle, Sebastian</creator><creator>Jochens, Helge</creator><creator>Robins, Karen</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20101101</creationdate><title>Rational assignment of key motifs for function guides in silico enzyme identification</title><author>Bornscheuer, Uwe T ; Höhne, Matthias ; Schätzle, Sebastian ; Jochens, Helge ; Robins, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a76ca0fdafdecaaac70811a8cae4d874dfea6eb20e6d061743e16fc4fccaaaf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/553/1886</topic><topic>631/92/469</topic><topic>639/638/77/883</topic><topic>Algorithms</topic><topic>Amines</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Bacteria - enzymology</topic><topic>Biocatalysis</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Enzymes</topic><topic>Glutamic Acid - chemistry</topic><topic>Glutamic Acid - metabolism</topic><topic>Ketoglutaric Acids - chemistry</topic><topic>Ketoglutaric Acids - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Pyruvic Acid - chemistry</topic><topic>Pyruvic Acid - metabolism</topic><topic>Sequence Alignment</topic><topic>Stereoisomerism</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Transaminases - analysis</topic><topic>Transaminases - chemistry</topic><topic>Transaminases - classification</topic><topic>Transaminases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bornscheuer, Uwe T</creatorcontrib><creatorcontrib>Höhne, Matthias</creatorcontrib><creatorcontrib>Schätzle, Sebastian</creatorcontrib><creatorcontrib>Jochens, Helge</creatorcontrib><creatorcontrib>Robins, Karen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bornscheuer, Uwe T</au><au>Höhne, Matthias</au><au>Schätzle, Sebastian</au><au>Jochens, Helge</au><au>Robins, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational assignment of key motifs for function guides in silico enzyme identification</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>6</volume><issue>11</issue><spage>807</spage><epage>813</epage><pages>807-813</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 ( R )-selective amine transaminases. Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an in silico strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 ( R )-selective amine transaminases, which catalyzed the synthesis of several ( R )-amines with excellent optical purity up to &gt;99% enantiomeric excess.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>20871599</pmid><doi>10.1038/nchembio.447</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2010-11, Vol.6 (11), p.807-813
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_759325176
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/553/1886
631/92/469
639/638/77/883
Algorithms
Amines
Amino Acid Motifs
Amino Acid Sequence
Amino acids
Bacteria - enzymology
Biocatalysis
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Catalysis
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Computational Biology - methods
Databases, Protein
Enzymes
Glutamic Acid - chemistry
Glutamic Acid - metabolism
Ketoglutaric Acids - chemistry
Ketoglutaric Acids - metabolism
Molecular Sequence Data
Mutation
Proteins
Pyruvic Acid - chemistry
Pyruvic Acid - metabolism
Sequence Alignment
Stereoisomerism
Structure-Activity Relationship
Substrate Specificity
Transaminases - analysis
Transaminases - chemistry
Transaminases - classification
Transaminases - metabolism
title Rational assignment of key motifs for function guides in silico enzyme identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20assignment%20of%20key%20motifs%20for%20function%20guides%20in%20silico%20enzyme%20identification&rft.jtitle=Nature%20chemical%20biology&rft.au=Bornscheuer,%20Uwe%20T&rft.date=2010-11-01&rft.volume=6&rft.issue=11&rft.spage=807&rft.epage=813&rft.pages=807-813&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.447&rft_dat=%3Cproquest_cross%3E2167478631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759156225&rft_id=info:pmid/20871599&rfr_iscdi=true