Rational assignment of key motifs for function guides in silico enzyme identification
The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 ( R )-selective amine transaminases. B...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2010-11, Vol.6 (11), p.807-813 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 813 |
---|---|
container_issue | 11 |
container_start_page | 807 |
container_title | Nature chemical biology |
container_volume | 6 |
creator | Bornscheuer, Uwe T Höhne, Matthias Schätzle, Sebastian Jochens, Helge Robins, Karen |
description | The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 (
R
)-selective amine transaminases.
Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an
in silico
strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this
in silico
approach, we have discovered 17 (
R
)-selective amine transaminases, which catalyzed the synthesis of several (
R
)-amines with excellent optical purity up to >99% enantiomeric excess. |
doi_str_mv | 10.1038/nchembio.447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759325176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167478631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a76ca0fdafdecaaac70811a8cae4d874dfea6eb20e6d061743e16fc4fccaaaf03</originalsourceid><addsrcrecordid>eNp10M1PwyAYBnBiNG5Ob54N8eLFKrRAu6NZ_EqWmBh3bhh9mcwWJrSH-dfLPo0mniDwy8PLg9A5JTeUZMWtVe_QTI27YSw_QH3KeZowJoaH-z0nPXQSwpyQTAhaHKNeSoqc8uGwjyavsjXOyhrLEMzMNmBb7DT-gCVuXGt0wNp5rDurVg7POlNBwMbiYGqjHAb7tWwAx1MbtVHruFN0pGUd4Gy7DtDk4f5t9JSMXx6fR3fjRDFWtInMhZJEV1JXoKSUKicFpbJQElhV5KzSIAVMUwKiIoLmLAMqtGJarbQm2QBdbXIX3n12ENqyMUFBXUsLrgtlzodZymkuorz8I-eu8_Hfa0S5SFMe0fUGKe9C8KDLhTeN9MuSknJVdrkru4xlR36xzeymDVR7vGs3gmQDQryyM_A_j_4TuB3SyrbzsA_8hb4BdHubQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759156225</pqid></control><display><type>article</type><title>Rational assignment of key motifs for function guides in silico enzyme identification</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bornscheuer, Uwe T ; Höhne, Matthias ; Schätzle, Sebastian ; Jochens, Helge ; Robins, Karen</creator><creatorcontrib>Bornscheuer, Uwe T ; Höhne, Matthias ; Schätzle, Sebastian ; Jochens, Helge ; Robins, Karen</creatorcontrib><description>The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 (
R
)-selective amine transaminases.
Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an
in silico
strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this
in silico
approach, we have discovered 17 (
R
)-selective amine transaminases, which catalyzed the synthesis of several (
R
)-amines with excellent optical purity up to >99% enantiomeric excess.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.447</identifier><identifier>PMID: 20871599</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/553/1886 ; 631/92/469 ; 639/638/77/883 ; Algorithms ; Amines ; Amino Acid Motifs ; Amino Acid Sequence ; Amino acids ; Bacteria - enzymology ; Biocatalysis ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Catalysis ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Computational Biology - methods ; Databases, Protein ; Enzymes ; Glutamic Acid - chemistry ; Glutamic Acid - metabolism ; Ketoglutaric Acids - chemistry ; Ketoglutaric Acids - metabolism ; Molecular Sequence Data ; Mutation ; Proteins ; Pyruvic Acid - chemistry ; Pyruvic Acid - metabolism ; Sequence Alignment ; Stereoisomerism ; Structure-Activity Relationship ; Substrate Specificity ; Transaminases - analysis ; Transaminases - chemistry ; Transaminases - classification ; Transaminases - metabolism</subject><ispartof>Nature chemical biology, 2010-11, Vol.6 (11), p.807-813</ispartof><rights>Springer Nature America, Inc. 2010</rights><rights>Copyright Nature Publishing Group Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a76ca0fdafdecaaac70811a8cae4d874dfea6eb20e6d061743e16fc4fccaaaf03</citedby><cites>FETCH-LOGICAL-c448t-a76ca0fdafdecaaac70811a8cae4d874dfea6eb20e6d061743e16fc4fccaaaf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.447$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.447$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20871599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bornscheuer, Uwe T</creatorcontrib><creatorcontrib>Höhne, Matthias</creatorcontrib><creatorcontrib>Schätzle, Sebastian</creatorcontrib><creatorcontrib>Jochens, Helge</creatorcontrib><creatorcontrib>Robins, Karen</creatorcontrib><title>Rational assignment of key motifs for function guides in silico enzyme identification</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 (
R
)-selective amine transaminases.
Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an
in silico
strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this
in silico
approach, we have discovered 17 (
R
)-selective amine transaminases, which catalyzed the synthesis of several (
R
)-amines with excellent optical purity up to >99% enantiomeric excess.</description><subject>631/553/1886</subject><subject>631/92/469</subject><subject>639/638/77/883</subject><subject>Algorithms</subject><subject>Amines</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Bacteria - enzymology</subject><subject>Biocatalysis</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Enzymes</subject><subject>Glutamic Acid - chemistry</subject><subject>Glutamic Acid - metabolism</subject><subject>Ketoglutaric Acids - chemistry</subject><subject>Ketoglutaric Acids - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Pyruvic Acid - chemistry</subject><subject>Pyruvic Acid - metabolism</subject><subject>Sequence Alignment</subject><subject>Stereoisomerism</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Transaminases - analysis</subject><subject>Transaminases - chemistry</subject><subject>Transaminases - classification</subject><subject>Transaminases - metabolism</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10M1PwyAYBnBiNG5Ob54N8eLFKrRAu6NZ_EqWmBh3bhh9mcwWJrSH-dfLPo0mniDwy8PLg9A5JTeUZMWtVe_QTI27YSw_QH3KeZowJoaH-z0nPXQSwpyQTAhaHKNeSoqc8uGwjyavsjXOyhrLEMzMNmBb7DT-gCVuXGt0wNp5rDurVg7POlNBwMbiYGqjHAb7tWwAx1MbtVHruFN0pGUd4Gy7DtDk4f5t9JSMXx6fR3fjRDFWtInMhZJEV1JXoKSUKicFpbJQElhV5KzSIAVMUwKiIoLmLAMqtGJarbQm2QBdbXIX3n12ENqyMUFBXUsLrgtlzodZymkuorz8I-eu8_Hfa0S5SFMe0fUGKe9C8KDLhTeN9MuSknJVdrkru4xlR36xzeymDVR7vGs3gmQDQryyM_A_j_4TuB3SyrbzsA_8hb4BdHubQw</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Bornscheuer, Uwe T</creator><creator>Höhne, Matthias</creator><creator>Schätzle, Sebastian</creator><creator>Jochens, Helge</creator><creator>Robins, Karen</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20101101</creationdate><title>Rational assignment of key motifs for function guides in silico enzyme identification</title><author>Bornscheuer, Uwe T ; Höhne, Matthias ; Schätzle, Sebastian ; Jochens, Helge ; Robins, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a76ca0fdafdecaaac70811a8cae4d874dfea6eb20e6d061743e16fc4fccaaaf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/553/1886</topic><topic>631/92/469</topic><topic>639/638/77/883</topic><topic>Algorithms</topic><topic>Amines</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Bacteria - enzymology</topic><topic>Biocatalysis</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Enzymes</topic><topic>Glutamic Acid - chemistry</topic><topic>Glutamic Acid - metabolism</topic><topic>Ketoglutaric Acids - chemistry</topic><topic>Ketoglutaric Acids - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Pyruvic Acid - chemistry</topic><topic>Pyruvic Acid - metabolism</topic><topic>Sequence Alignment</topic><topic>Stereoisomerism</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Transaminases - analysis</topic><topic>Transaminases - chemistry</topic><topic>Transaminases - classification</topic><topic>Transaminases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bornscheuer, Uwe T</creatorcontrib><creatorcontrib>Höhne, Matthias</creatorcontrib><creatorcontrib>Schätzle, Sebastian</creatorcontrib><creatorcontrib>Jochens, Helge</creatorcontrib><creatorcontrib>Robins, Karen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bornscheuer, Uwe T</au><au>Höhne, Matthias</au><au>Schätzle, Sebastian</au><au>Jochens, Helge</au><au>Robins, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational assignment of key motifs for function guides in silico enzyme identification</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>6</volume><issue>11</issue><spage>807</spage><epage>813</epage><pages>807-813</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>The identification or development of enzymes with new functions remains a significant challenge. A new strategy uses rationally selected sequences anticipated to serve as functional motifs to search the wealth of available genomic data, successfully yielding 17 (
R
)-selective amine transaminases.
Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an
in silico
strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this
in silico
approach, we have discovered 17 (
R
)-selective amine transaminases, which catalyzed the synthesis of several (
R
)-amines with excellent optical purity up to >99% enantiomeric excess.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>20871599</pmid><doi>10.1038/nchembio.447</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2010-11, Vol.6 (11), p.807-813 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_proquest_miscellaneous_759325176 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/553/1886 631/92/469 639/638/77/883 Algorithms Amines Amino Acid Motifs Amino Acid Sequence Amino acids Bacteria - enzymology Biocatalysis Biochemical Engineering Biochemistry Bioorganic Chemistry Catalysis Cell Biology Chemistry Chemistry and Materials Science Chemistry/Food Science Computational Biology - methods Databases, Protein Enzymes Glutamic Acid - chemistry Glutamic Acid - metabolism Ketoglutaric Acids - chemistry Ketoglutaric Acids - metabolism Molecular Sequence Data Mutation Proteins Pyruvic Acid - chemistry Pyruvic Acid - metabolism Sequence Alignment Stereoisomerism Structure-Activity Relationship Substrate Specificity Transaminases - analysis Transaminases - chemistry Transaminases - classification Transaminases - metabolism |
title | Rational assignment of key motifs for function guides in silico enzyme identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20assignment%20of%20key%20motifs%20for%20function%20guides%20in%20silico%20enzyme%20identification&rft.jtitle=Nature%20chemical%20biology&rft.au=Bornscheuer,%20Uwe%20T&rft.date=2010-11-01&rft.volume=6&rft.issue=11&rft.spage=807&rft.epage=813&rft.pages=807-813&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.447&rft_dat=%3Cproquest_cross%3E2167478631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759156225&rft_id=info:pmid/20871599&rfr_iscdi=true |