Modified Grey Model for Estimating Traffic Tunnel Air Quality
This study compared three forecasting models based on the mean absolute percentage errors (MAPE) of their accuracy in forecasting air pollution in a traffic tunnel: the Grey model (GM), the combination model used four sample point and five sample point prediction with GM (1,1)(GM(1,1)⁴ ⁺ ⁵), and the...
Gespeichert in:
Veröffentlicht in: | Environmental monitoring and assessment 2007-09, Vol.132 (1-3), p.351-364 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | 1-3 |
container_start_page | 351 |
container_title | Environmental monitoring and assessment |
container_volume | 132 |
creator | Lee, Cheng-Chung Wan, Terng-Jou Kuo, Chao-Yin Chung, Chung-Yi |
description | This study compared three forecasting models based on the mean absolute percentage errors (MAPE) of their accuracy in forecasting air pollution in a traffic tunnel: the Grey model (GM), the combination model used four sample point and five sample point prediction with GM (1,1)(GM(1,1)⁴ ⁺ ⁵), and the modified grey model (MGM). An MGM was combined using the four points of the original sequence using the original grey prediction GM (1,1) for short-term forecasting. The proposed method cannot only enhance the prediction accuracy of the original grey model, but can also solve the jump data forecasting problem something for which the original grey model is inappropriate. The MAPE was applied to the models, and the MGM found the proposed method to be simple and efficient. The MAPE of MGM, calculated over 3 h of forecasts, were as follows: 10.12 (Upwind), 10.07 (Middle) and 7.68 (Downwind) for CO; 10.79 (Upwind), 6.05 (Middle) and 5.98 (Downwind) for NO x , and 11.67 (Upwind), 7.32 (Middle) and 4.56 (Downwind) for NMHC. The MGM model results reveal that the combined forecasts can significantly decrease the overall forecasting error. Results of this demonstrate that MGM can accurately forecast air pollution in the Kaohsiung Chung-Cheng Tunnel. |
doi_str_mv | 10.1007/s10661-006-9539-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759319504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2059362571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-9aa352a8366b5588cebf779e5846ab70d5d2b865e2c3dd7767f11c5b4fcef4553</originalsourceid><addsrcrecordid>eNqN0s9rFDEUB_Agil2rf0AvdRCsvYzmd-YdeiilrUKLiNtzyGSSkjI7U5OZw_73fcMuFDxUTyHkkxfy3peQI0a_MkrNt8Ko1qymVNegBNTyFVkxZUTNQcFrsqJMm1oLDQfkXSkPlFIwEt6SA2aE5FLSFTm7HbsUU-iq6xy2Fe5CX8UxV5dlShs3peG-WmcXY_LVeh4GPD1Pufo1uz5N2_fkTXR9CR_26yG5u7pcX3yvb35e_7g4v6m9kmyqwTmhuGuE1q1STeNDG42BoBqpXWtopzreNloF7kXXGaNNZMyrVkYfolRKHJIvu7qPefwzhzLZTSo-9L0bwjgXaxQIBorKf0uJFEAsNU9elJxiJw1vEJ6-CLHJjOtGNfo_qcShIf30F30Y5zxgF60EYACGL79hO-TzWEoO0T5mnEreWkbtEgG7i4DFCNglAna5c7wvPLeb0D3f2M8cwec9cMW7PmY3-FSeHVAmMDToPu5cdKN19xnN3W-Oh_guSGaoeAIgsr5B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>499199724</pqid></control><display><type>article</type><title>Modified Grey Model for Estimating Traffic Tunnel Air Quality</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Cheng-Chung ; Wan, Terng-Jou ; Kuo, Chao-Yin ; Chung, Chung-Yi</creator><creatorcontrib>Lee, Cheng-Chung ; Wan, Terng-Jou ; Kuo, Chao-Yin ; Chung, Chung-Yi</creatorcontrib><description>This study compared three forecasting models based on the mean absolute percentage errors (MAPE) of their accuracy in forecasting air pollution in a traffic tunnel: the Grey model (GM), the combination model used four sample point and five sample point prediction with GM (1,1)(GM(1,1)⁴ ⁺ ⁵), and the modified grey model (MGM). An MGM was combined using the four points of the original sequence using the original grey prediction GM (1,1) for short-term forecasting. The proposed method cannot only enhance the prediction accuracy of the original grey model, but can also solve the jump data forecasting problem something for which the original grey model is inappropriate. The MAPE was applied to the models, and the MGM found the proposed method to be simple and efficient. The MAPE of MGM, calculated over 3 h of forecasts, were as follows: 10.12 (Upwind), 10.07 (Middle) and 7.68 (Downwind) for CO; 10.79 (Upwind), 6.05 (Middle) and 5.98 (Downwind) for NO x , and 11.67 (Upwind), 7.32 (Middle) and 4.56 (Downwind) for NMHC. The MGM model results reveal that the combined forecasts can significantly decrease the overall forecasting error. Results of this demonstrate that MGM can accurately forecast air pollution in the Kaohsiung Chung-Cheng Tunnel.</description><identifier>ISSN: 0167-6369</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1007/s10661-006-9539-4</identifier><identifier>PMID: 17342440</identifier><identifier>CODEN: EMASDH</identifier><language>eng</language><publisher>Dordrect: Dordrecht : Springer Netherlands</publisher><subject>Accuracy ; Air - standards ; Air pollution ; Air Pollution - analysis ; Air pollution forecasting ; Air quality ; Applied sciences ; Atmospheric pollution ; Carbon monoxide ; Environmental engineering ; Environmental monitoring ; Exact sciences and technology ; Forecasting ; Grey Model (GM(1,1)⁴⁻⁺⁻⁵) ; Hydrocarbons ; Mathematical models ; Models, Theoretical ; Modified Grey Model (MGM) ; Neural networks ; Ordinary Least Squares (OLS) ; Outdoor air quality ; Pollutants ; Pollution ; Pollution sources. Measurement results ; Science ; Studies ; Time series ; Traffic engineering ; Traffic flow ; Traffic tunnel ; Transports ; Tunnels ; Tunnels (transportation) ; Vehicle Emissions ; Ventilation ; Wind</subject><ispartof>Environmental monitoring and assessment, 2007-09, Vol.132 (1-3), p.351-364</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-9aa352a8366b5588cebf779e5846ab70d5d2b865e2c3dd7767f11c5b4fcef4553</citedby><cites>FETCH-LOGICAL-c541t-9aa352a8366b5588cebf779e5846ab70d5d2b865e2c3dd7767f11c5b4fcef4553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19013636$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17342440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Cheng-Chung</creatorcontrib><creatorcontrib>Wan, Terng-Jou</creatorcontrib><creatorcontrib>Kuo, Chao-Yin</creatorcontrib><creatorcontrib>Chung, Chung-Yi</creatorcontrib><title>Modified Grey Model for Estimating Traffic Tunnel Air Quality</title><title>Environmental monitoring and assessment</title><addtitle>Environ Monit Assess</addtitle><description>This study compared three forecasting models based on the mean absolute percentage errors (MAPE) of their accuracy in forecasting air pollution in a traffic tunnel: the Grey model (GM), the combination model used four sample point and five sample point prediction with GM (1,1)(GM(1,1)⁴ ⁺ ⁵), and the modified grey model (MGM). An MGM was combined using the four points of the original sequence using the original grey prediction GM (1,1) for short-term forecasting. The proposed method cannot only enhance the prediction accuracy of the original grey model, but can also solve the jump data forecasting problem something for which the original grey model is inappropriate. The MAPE was applied to the models, and the MGM found the proposed method to be simple and efficient. The MAPE of MGM, calculated over 3 h of forecasts, were as follows: 10.12 (Upwind), 10.07 (Middle) and 7.68 (Downwind) for CO; 10.79 (Upwind), 6.05 (Middle) and 5.98 (Downwind) for NO x , and 11.67 (Upwind), 7.32 (Middle) and 4.56 (Downwind) for NMHC. The MGM model results reveal that the combined forecasts can significantly decrease the overall forecasting error. Results of this demonstrate that MGM can accurately forecast air pollution in the Kaohsiung Chung-Cheng Tunnel.</description><subject>Accuracy</subject><subject>Air - standards</subject><subject>Air pollution</subject><subject>Air Pollution - analysis</subject><subject>Air pollution forecasting</subject><subject>Air quality</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Carbon monoxide</subject><subject>Environmental engineering</subject><subject>Environmental monitoring</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Grey Model (GM(1,1)⁴⁻⁺⁻⁵)</subject><subject>Hydrocarbons</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Modified Grey Model (MGM)</subject><subject>Neural networks</subject><subject>Ordinary Least Squares (OLS)</subject><subject>Outdoor air quality</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Pollution sources. Measurement results</subject><subject>Science</subject><subject>Studies</subject><subject>Time series</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Traffic tunnel</subject><subject>Transports</subject><subject>Tunnels</subject><subject>Tunnels (transportation)</subject><subject>Vehicle Emissions</subject><subject>Ventilation</subject><subject>Wind</subject><issn>0167-6369</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0s9rFDEUB_Agil2rf0AvdRCsvYzmd-YdeiilrUKLiNtzyGSSkjI7U5OZw_73fcMuFDxUTyHkkxfy3peQI0a_MkrNt8Ko1qymVNegBNTyFVkxZUTNQcFrsqJMm1oLDQfkXSkPlFIwEt6SA2aE5FLSFTm7HbsUU-iq6xy2Fe5CX8UxV5dlShs3peG-WmcXY_LVeh4GPD1Pufo1uz5N2_fkTXR9CR_26yG5u7pcX3yvb35e_7g4v6m9kmyqwTmhuGuE1q1STeNDG42BoBqpXWtopzreNloF7kXXGaNNZMyrVkYfolRKHJIvu7qPefwzhzLZTSo-9L0bwjgXaxQIBorKf0uJFEAsNU9elJxiJw1vEJ6-CLHJjOtGNfo_qcShIf30F30Y5zxgF60EYACGL79hO-TzWEoO0T5mnEreWkbtEgG7i4DFCNglAna5c7wvPLeb0D3f2M8cwec9cMW7PmY3-FSeHVAmMDToPu5cdKN19xnN3W-Oh_guSGaoeAIgsr5B</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Lee, Cheng-Chung</creator><creator>Wan, Terng-Jou</creator><creator>Kuo, Chao-Yin</creator><creator>Chung, Chung-Yi</creator><general>Dordrecht : Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KL.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SU</scope><scope>KR7</scope><scope>7TV</scope></search><sort><creationdate>20070901</creationdate><title>Modified Grey Model for Estimating Traffic Tunnel Air Quality</title><author>Lee, Cheng-Chung ; Wan, Terng-Jou ; Kuo, Chao-Yin ; Chung, Chung-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-9aa352a8366b5588cebf779e5846ab70d5d2b865e2c3dd7767f11c5b4fcef4553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Accuracy</topic><topic>Air - standards</topic><topic>Air pollution</topic><topic>Air Pollution - analysis</topic><topic>Air pollution forecasting</topic><topic>Air quality</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Carbon monoxide</topic><topic>Environmental engineering</topic><topic>Environmental monitoring</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Grey Model (GM(1,1)⁴⁻⁺⁻⁵)</topic><topic>Hydrocarbons</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Modified Grey Model (MGM)</topic><topic>Neural networks</topic><topic>Ordinary Least Squares (OLS)</topic><topic>Outdoor air quality</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Pollution sources. Measurement results</topic><topic>Science</topic><topic>Studies</topic><topic>Time series</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Traffic tunnel</topic><topic>Transports</topic><topic>Tunnels</topic><topic>Tunnels (transportation)</topic><topic>Vehicle Emissions</topic><topic>Ventilation</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Cheng-Chung</creatorcontrib><creatorcontrib>Wan, Terng-Jou</creatorcontrib><creatorcontrib>Kuo, Chao-Yin</creatorcontrib><creatorcontrib>Chung, Chung-Yi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Cheng-Chung</au><au>Wan, Terng-Jou</au><au>Kuo, Chao-Yin</au><au>Chung, Chung-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Grey Model for Estimating Traffic Tunnel Air Quality</atitle><jtitle>Environmental monitoring and assessment</jtitle><addtitle>Environ Monit Assess</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>132</volume><issue>1-3</issue><spage>351</spage><epage>364</epage><pages>351-364</pages><issn>0167-6369</issn><eissn>1573-2959</eissn><coden>EMASDH</coden><abstract>This study compared three forecasting models based on the mean absolute percentage errors (MAPE) of their accuracy in forecasting air pollution in a traffic tunnel: the Grey model (GM), the combination model used four sample point and five sample point prediction with GM (1,1)(GM(1,1)⁴ ⁺ ⁵), and the modified grey model (MGM). An MGM was combined using the four points of the original sequence using the original grey prediction GM (1,1) for short-term forecasting. The proposed method cannot only enhance the prediction accuracy of the original grey model, but can also solve the jump data forecasting problem something for which the original grey model is inappropriate. The MAPE was applied to the models, and the MGM found the proposed method to be simple and efficient. The MAPE of MGM, calculated over 3 h of forecasts, were as follows: 10.12 (Upwind), 10.07 (Middle) and 7.68 (Downwind) for CO; 10.79 (Upwind), 6.05 (Middle) and 5.98 (Downwind) for NO x , and 11.67 (Upwind), 7.32 (Middle) and 4.56 (Downwind) for NMHC. The MGM model results reveal that the combined forecasts can significantly decrease the overall forecasting error. Results of this demonstrate that MGM can accurately forecast air pollution in the Kaohsiung Chung-Cheng Tunnel.</abstract><cop>Dordrect</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>17342440</pmid><doi>10.1007/s10661-006-9539-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6369 |
ispartof | Environmental monitoring and assessment, 2007-09, Vol.132 (1-3), p.351-364 |
issn | 0167-6369 1573-2959 |
language | eng |
recordid | cdi_proquest_miscellaneous_759319504 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Accuracy Air - standards Air pollution Air Pollution - analysis Air pollution forecasting Air quality Applied sciences Atmospheric pollution Carbon monoxide Environmental engineering Environmental monitoring Exact sciences and technology Forecasting Grey Model (GM(1,1)⁴⁻⁺⁻⁵) Hydrocarbons Mathematical models Models, Theoretical Modified Grey Model (MGM) Neural networks Ordinary Least Squares (OLS) Outdoor air quality Pollutants Pollution Pollution sources. Measurement results Science Studies Time series Traffic engineering Traffic flow Traffic tunnel Transports Tunnels Tunnels (transportation) Vehicle Emissions Ventilation Wind |
title | Modified Grey Model for Estimating Traffic Tunnel Air Quality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Grey%20Model%20for%20Estimating%20Traffic%20Tunnel%20Air%20Quality&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=Lee,%20Cheng-Chung&rft.date=2007-09-01&rft.volume=132&rft.issue=1-3&rft.spage=351&rft.epage=364&rft.pages=351-364&rft.issn=0167-6369&rft.eissn=1573-2959&rft.coden=EMASDH&rft_id=info:doi/10.1007/s10661-006-9539-4&rft_dat=%3Cproquest_cross%3E2059362571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=499199724&rft_id=info:pmid/17342440&rfr_iscdi=true |