Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming
This study uses an extensive dataset of monthly surface air temperature (SAT) records (including previously unutilized) from high-latitude (>60°N) meteorological land stations. Most records have been updated by very recent observations (up to December 2008). Using these data, a high-latitude warm...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2010-07, Vol.23 (14), p.3888-3906 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3906 |
---|---|
container_issue | 14 |
container_start_page | 3888 |
container_title | Journal of climate |
container_volume | 23 |
creator | Bekryaev, Roman V. Polyakov, Igor V. Alexeev, Vladimir A. |
description | This study uses an extensive dataset of monthly surface air temperature (SAT) records (including previously unutilized) from high-latitude (>60°N) meteorological land stations. Most records have been updated by very recent observations (up to December 2008). Using these data, a high-latitude warming rate of 1.36°C century−1is documented for 1875–2008—the trend is almost 2 times stronger than the Northern Hemisphere trend (0.79°C century−1), with an accelerated warming rate in the most recent decade (1.35°C decade−1). Stronger warming in high-latitude regions is a manifestation of polar amplification (PA). Changes in SAT suggest two spatial scales of PA—hemispheric and local. A new stable statistical measure of PA linking high-latitude and hemispheric temperature anomalies via a regression relationship is proposed. For 1875–2008, this measure yields PA of ∼1.62. Local PA related to the ice–albedo feedback mechanisms is autumnal and coastal, extending several hundred kilometers inland. Heat budget estimates suggest that a recent reduction of arctic ice and anomalously high SATs cannot be explained by ice–albedo feedback mechanisms alone, and the role of large-scale mechanisms of PA of global warming should not be overlooked. |
doi_str_mv | 10.1175/2010jcli3297.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_759316554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26189941</jstor_id><sourcerecordid>26189941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-ad201f3bbd533f29a2e112548d4678ea0678fe1ce35d53b8f97f231d37e2c9423</originalsourceid><addsrcrecordid>eNp10U2P0zAQBmALgURZuHJDsuDAKV2PPxL7WFV8LOpqERQ4Rq4zXrlK4jJODvvvSSnigMRl5vLMaEYvYy9BrAEacy0FiGPok5KuWcMjtgIjRSW0lo_ZSlinK9sY85Q9K-UoBMhaiBXDL7lHniP_nHtPfDOc-hRT8FPKI08j3-XxvtojDfzrTNEH5JtEfI_DCclPMyH_7in95oX7seO3uUMa-YbClAL_4WlI4_1z9iT6vuCLP_2KfXv_br_9WO3uPtxsN7sqaOemynfLD1EdDp1RKkrnJQJIo22n68aiF0uNCAGVWcTBRtdEqaBTDcrgtFRX7O1l74nyzxnL1A6pBOx7P2KeS9sYp6A2Ri_y9T_ymGcal-PaRlurhLNmQW_-h6QFrWqta7uo9UUFyqUQxvZEafD00IJoz8m052Q-bXc352RaWAZeXQaOZcr0V8sarHMa1C83v4km</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814364468</pqid></control><display><type>article</type><title>Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bekryaev, Roman V. ; Polyakov, Igor V. ; Alexeev, Vladimir A.</creator><creatorcontrib>Bekryaev, Roman V. ; Polyakov, Igor V. ; Alexeev, Vladimir A.</creatorcontrib><description>This study uses an extensive dataset of monthly surface air temperature (SAT) records (including previously unutilized) from high-latitude (>60°N) meteorological land stations. Most records have been updated by very recent observations (up to December 2008). Using these data, a high-latitude warming rate of 1.36°C century−1is documented for 1875–2008—the trend is almost 2 times stronger than the Northern Hemisphere trend (0.79°C century−1), with an accelerated warming rate in the most recent decade (1.35°C decade−1). Stronger warming in high-latitude regions is a manifestation of polar amplification (PA). Changes in SAT suggest two spatial scales of PA—hemispheric and local. A new stable statistical measure of PA linking high-latitude and hemispheric temperature anomalies via a regression relationship is proposed. For 1875–2008, this measure yields PA of ∼1.62. Local PA related to the ice–albedo feedback mechanisms is autumnal and coastal, extending several hundred kilometers inland. Heat budget estimates suggest that a recent reduction of arctic ice and anomalously high SATs cannot be explained by ice–albedo feedback mechanisms alone, and the role of large-scale mechanisms of PA of global warming should not be overlooked.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2010jcli3297.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Air temperature ; Albedo ; Amplification ; Anomalies ; Archives & records ; Arctic ice ; Climate change ; Climate models ; Computer centers ; Datasets ; Feedback ; General circulation models ; Global warming ; Heat ; Heat budget ; Humidity ; Ice ; Latitude ; Meteorology ; Northern Hemisphere ; Oceans ; Radiation ; Records ; Seasons ; Snow ; Statistical analysis ; Surface temperature ; Surface-air temperature relationships ; Temperature anomalies ; Temperature variations ; Time series ; Trends</subject><ispartof>Journal of climate, 2010-07, Vol.23 (14), p.3888-3906</ispartof><rights>2010 American Meteorological Society</rights><rights>Copyright American Meteorological Society 2010</rights><rights>Copyright American Meteorological Society Jul 15, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-ad201f3bbd533f29a2e112548d4678ea0678fe1ce35d53b8f97f231d37e2c9423</citedby><cites>FETCH-LOGICAL-c499t-ad201f3bbd533f29a2e112548d4678ea0678fe1ce35d53b8f97f231d37e2c9423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26189941$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26189941$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Bekryaev, Roman V.</creatorcontrib><creatorcontrib>Polyakov, Igor V.</creatorcontrib><creatorcontrib>Alexeev, Vladimir A.</creatorcontrib><title>Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming</title><title>Journal of climate</title><description>This study uses an extensive dataset of monthly surface air temperature (SAT) records (including previously unutilized) from high-latitude (>60°N) meteorological land stations. Most records have been updated by very recent observations (up to December 2008). Using these data, a high-latitude warming rate of 1.36°C century−1is documented for 1875–2008—the trend is almost 2 times stronger than the Northern Hemisphere trend (0.79°C century−1), with an accelerated warming rate in the most recent decade (1.35°C decade−1). Stronger warming in high-latitude regions is a manifestation of polar amplification (PA). Changes in SAT suggest two spatial scales of PA—hemispheric and local. A new stable statistical measure of PA linking high-latitude and hemispheric temperature anomalies via a regression relationship is proposed. For 1875–2008, this measure yields PA of ∼1.62. Local PA related to the ice–albedo feedback mechanisms is autumnal and coastal, extending several hundred kilometers inland. Heat budget estimates suggest that a recent reduction of arctic ice and anomalously high SATs cannot be explained by ice–albedo feedback mechanisms alone, and the role of large-scale mechanisms of PA of global warming should not be overlooked.</description><subject>Air temperature</subject><subject>Albedo</subject><subject>Amplification</subject><subject>Anomalies</subject><subject>Archives & records</subject><subject>Arctic ice</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Computer centers</subject><subject>Datasets</subject><subject>Feedback</subject><subject>General circulation models</subject><subject>Global warming</subject><subject>Heat</subject><subject>Heat budget</subject><subject>Humidity</subject><subject>Ice</subject><subject>Latitude</subject><subject>Meteorology</subject><subject>Northern Hemisphere</subject><subject>Oceans</subject><subject>Radiation</subject><subject>Records</subject><subject>Seasons</subject><subject>Snow</subject><subject>Statistical analysis</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Temperature anomalies</subject><subject>Temperature variations</subject><subject>Time series</subject><subject>Trends</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10U2P0zAQBmALgURZuHJDsuDAKV2PPxL7WFV8LOpqERQ4Rq4zXrlK4jJODvvvSSnigMRl5vLMaEYvYy9BrAEacy0FiGPok5KuWcMjtgIjRSW0lo_ZSlinK9sY85Q9K-UoBMhaiBXDL7lHniP_nHtPfDOc-hRT8FPKI08j3-XxvtojDfzrTNEH5JtEfI_DCclPMyH_7in95oX7seO3uUMa-YbClAL_4WlI4_1z9iT6vuCLP_2KfXv_br_9WO3uPtxsN7sqaOemynfLD1EdDp1RKkrnJQJIo22n68aiF0uNCAGVWcTBRtdEqaBTDcrgtFRX7O1l74nyzxnL1A6pBOx7P2KeS9sYp6A2Ri_y9T_ymGcal-PaRlurhLNmQW_-h6QFrWqta7uo9UUFyqUQxvZEafD00IJoz8m052Q-bXc352RaWAZeXQaOZcr0V8sarHMa1C83v4km</recordid><startdate>20100715</startdate><enddate>20100715</enddate><creator>Bekryaev, Roman V.</creator><creator>Polyakov, Igor V.</creator><creator>Alexeev, Vladimir A.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>7TN</scope><scope>7TV</scope><scope>7U6</scope><scope>H95</scope><scope>H97</scope></search><sort><creationdate>20100715</creationdate><title>Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming</title><author>Bekryaev, Roman V. ; Polyakov, Igor V. ; Alexeev, Vladimir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-ad201f3bbd533f29a2e112548d4678ea0678fe1ce35d53b8f97f231d37e2c9423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Air temperature</topic><topic>Albedo</topic><topic>Amplification</topic><topic>Anomalies</topic><topic>Archives & records</topic><topic>Arctic ice</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Computer centers</topic><topic>Datasets</topic><topic>Feedback</topic><topic>General circulation models</topic><topic>Global warming</topic><topic>Heat</topic><topic>Heat budget</topic><topic>Humidity</topic><topic>Ice</topic><topic>Latitude</topic><topic>Meteorology</topic><topic>Northern Hemisphere</topic><topic>Oceans</topic><topic>Radiation</topic><topic>Records</topic><topic>Seasons</topic><topic>Snow</topic><topic>Statistical analysis</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Temperature anomalies</topic><topic>Temperature variations</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekryaev, Roman V.</creatorcontrib><creatorcontrib>Polyakov, Igor V.</creatorcontrib><creatorcontrib>Alexeev, Vladimir A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekryaev, Roman V.</au><au>Polyakov, Igor V.</au><au>Alexeev, Vladimir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming</atitle><jtitle>Journal of climate</jtitle><date>2010-07-15</date><risdate>2010</risdate><volume>23</volume><issue>14</issue><spage>3888</spage><epage>3906</epage><pages>3888-3906</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>This study uses an extensive dataset of monthly surface air temperature (SAT) records (including previously unutilized) from high-latitude (>60°N) meteorological land stations. Most records have been updated by very recent observations (up to December 2008). Using these data, a high-latitude warming rate of 1.36°C century−1is documented for 1875–2008—the trend is almost 2 times stronger than the Northern Hemisphere trend (0.79°C century−1), with an accelerated warming rate in the most recent decade (1.35°C decade−1). Stronger warming in high-latitude regions is a manifestation of polar amplification (PA). Changes in SAT suggest two spatial scales of PA—hemispheric and local. A new stable statistical measure of PA linking high-latitude and hemispheric temperature anomalies via a regression relationship is proposed. For 1875–2008, this measure yields PA of ∼1.62. Local PA related to the ice–albedo feedback mechanisms is autumnal and coastal, extending several hundred kilometers inland. Heat budget estimates suggest that a recent reduction of arctic ice and anomalously high SATs cannot be explained by ice–albedo feedback mechanisms alone, and the role of large-scale mechanisms of PA of global warming should not be overlooked.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/2010jcli3297.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2010-07, Vol.23 (14), p.3888-3906 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_759316554 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Air temperature Albedo Amplification Anomalies Archives & records Arctic ice Climate change Climate models Computer centers Datasets Feedback General circulation models Global warming Heat Heat budget Humidity Ice Latitude Meteorology Northern Hemisphere Oceans Radiation Records Seasons Snow Statistical analysis Surface temperature Surface-air temperature relationships Temperature anomalies Temperature variations Time series Trends |
title | Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Polar%20Amplification%20in%20Long-Term%20Surface%20Air%20Temperature%20Variations%20and%20Modern%20Arctic%20Warming&rft.jtitle=Journal%20of%20climate&rft.au=Bekryaev,%20Roman%20V.&rft.date=2010-07-15&rft.volume=23&rft.issue=14&rft.spage=3888&rft.epage=3906&rft.pages=3888-3906&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2010jcli3297.1&rft_dat=%3Cjstor_proqu%3E26189941%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814364468&rft_id=info:pmid/&rft_jstor_id=26189941&rfr_iscdi=true |