Hybrid Bayesian network classifiers: Application to species distribution models

Bayesian networks are one of the most powerful tools in the design of expert systems located in an uncertainty framework. However, normally their application is determined by the discretization of the continuous variables. In this paper the naïve Bayes (NB) and tree augmented naïve Bayes (TAN) model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2010-12, Vol.25 (12), p.1630-1639
Hauptverfasser: Aguilera, P.A., Fernández, A., Reche, F., Rumí, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1639
container_issue 12
container_start_page 1630
container_title Environmental modelling & software : with environment data news
container_volume 25
creator Aguilera, P.A.
Fernández, A.
Reche, F.
Rumí, R.
description Bayesian networks are one of the most powerful tools in the design of expert systems located in an uncertainty framework. However, normally their application is determined by the discretization of the continuous variables. In this paper the naïve Bayes (NB) and tree augmented naïve Bayes (TAN) models are developed. They are based on Mixtures of Truncated Exponentials (MTE) designed to deal with discrete and continuous variables in the same network simultaneously without any restriction. The aim is to characterize the habitat of the spur-thighed tortoise ( Testudo graeca graeca), using several continuous environmental variables, and one discrete (binary) variable representing the presence or absence of the tortoise. These models are compared with the full discrete models and the results show a better classification rate for the continuous one. Therefore, the application of continuous models instead of discrete ones avoids loss of statistical information due to the discretization. Moreover, the results of the TAN continuous model show a more spatially accurate distribution of the tortoise. The species is located in the Doñana Natural Park, and in semiarid habitats. The proposed continuous models based on MTEs are valid for the study of species predictive distribution modelling.
doi_str_mv 10.1016/j.envsoft.2010.04.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759315278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815210001222</els_id><sourcerecordid>759315278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-9102eec65d06cea161dde8c39163c4d3d704cce5b62b357a92d1a1ba306e08a43</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhj2ARCk8AlI2WBLsOHESFlQqoEiVusBsOfZFcknj4HOL-va4tDNMd_r1_SfdR8gNoxmjTNyvMxh26LqQ5TRmtMhiekYmjIsirVmZX5BLxDWlNO7FhKwW-9ZbkzypPaBVQzJA-Hb-M9G9QrSdBY8PyWwce6tVsG5IgktwBG0BE2MxeNtuf_ONM9DjFTnvVI9wfZpT8vHy_D5fpMvV69t8tkw1r4qQNozmAFqUhgoNiglmDNSaN0xwXRhuKlpoDWUr8paXlWpywxRrFacCaK0KPiW3x7ujd19bwCA3FjX0vRrAbVFWZcPjh1Udybs_SSYqVgrGmyai5RHV3iF66OTo7Ub5vWRUHvTKtTzplQe9khYyprH3eOxFAbCLyiRGP4MGYz3oII2z_1z4AWrSiYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671561399</pqid></control><display><type>article</type><title>Hybrid Bayesian network classifiers: Application to species distribution models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Aguilera, P.A. ; Fernández, A. ; Reche, F. ; Rumí, R.</creator><creatorcontrib>Aguilera, P.A. ; Fernández, A. ; Reche, F. ; Rumí, R.</creatorcontrib><description>Bayesian networks are one of the most powerful tools in the design of expert systems located in an uncertainty framework. However, normally their application is determined by the discretization of the continuous variables. In this paper the naïve Bayes (NB) and tree augmented naïve Bayes (TAN) models are developed. They are based on Mixtures of Truncated Exponentials (MTE) designed to deal with discrete and continuous variables in the same network simultaneously without any restriction. The aim is to characterize the habitat of the spur-thighed tortoise ( Testudo graeca graeca), using several continuous environmental variables, and one discrete (binary) variable representing the presence or absence of the tortoise. These models are compared with the full discrete models and the results show a better classification rate for the continuous one. Therefore, the application of continuous models instead of discrete ones avoids loss of statistical information due to the discretization. Moreover, the results of the TAN continuous model show a more spatially accurate distribution of the tortoise. The species is located in the Doñana Natural Park, and in semiarid habitats. The proposed continuous models based on MTEs are valid for the study of species predictive distribution modelling.</description><identifier>ISSN: 1364-8152</identifier><identifier>DOI: 10.1016/j.envsoft.2010.04.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bayesian analysis ; Classification ; Conservation planning ; Discretization ; Expert systems ; Habitats ; Hybrid Bayesian networks ; Mathematical models ; Mixtures of truncated exponentials ; Modelling ; Networks ; Testudo graeca</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2010-12, Vol.25 (12), p.1630-1639</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-9102eec65d06cea161dde8c39163c4d3d704cce5b62b357a92d1a1ba306e08a43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsoft.2010.04.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Aguilera, P.A.</creatorcontrib><creatorcontrib>Fernández, A.</creatorcontrib><creatorcontrib>Reche, F.</creatorcontrib><creatorcontrib>Rumí, R.</creatorcontrib><title>Hybrid Bayesian network classifiers: Application to species distribution models</title><title>Environmental modelling &amp; software : with environment data news</title><description>Bayesian networks are one of the most powerful tools in the design of expert systems located in an uncertainty framework. However, normally their application is determined by the discretization of the continuous variables. In this paper the naïve Bayes (NB) and tree augmented naïve Bayes (TAN) models are developed. They are based on Mixtures of Truncated Exponentials (MTE) designed to deal with discrete and continuous variables in the same network simultaneously without any restriction. The aim is to characterize the habitat of the spur-thighed tortoise ( Testudo graeca graeca), using several continuous environmental variables, and one discrete (binary) variable representing the presence or absence of the tortoise. These models are compared with the full discrete models and the results show a better classification rate for the continuous one. Therefore, the application of continuous models instead of discrete ones avoids loss of statistical information due to the discretization. Moreover, the results of the TAN continuous model show a more spatially accurate distribution of the tortoise. The species is located in the Doñana Natural Park, and in semiarid habitats. The proposed continuous models based on MTEs are valid for the study of species predictive distribution modelling.</description><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Conservation planning</subject><subject>Discretization</subject><subject>Expert systems</subject><subject>Habitats</subject><subject>Hybrid Bayesian networks</subject><subject>Mathematical models</subject><subject>Mixtures of truncated exponentials</subject><subject>Modelling</subject><subject>Networks</subject><subject>Testudo graeca</subject><issn>1364-8152</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhj2ARCk8AlI2WBLsOHESFlQqoEiVusBsOfZFcknj4HOL-va4tDNMd_r1_SfdR8gNoxmjTNyvMxh26LqQ5TRmtMhiekYmjIsirVmZX5BLxDWlNO7FhKwW-9ZbkzypPaBVQzJA-Hb-M9G9QrSdBY8PyWwce6tVsG5IgktwBG0BE2MxeNtuf_ONM9DjFTnvVI9wfZpT8vHy_D5fpMvV69t8tkw1r4qQNozmAFqUhgoNiglmDNSaN0xwXRhuKlpoDWUr8paXlWpywxRrFacCaK0KPiW3x7ujd19bwCA3FjX0vRrAbVFWZcPjh1Udybs_SSYqVgrGmyai5RHV3iF66OTo7Ub5vWRUHvTKtTzplQe9khYyprH3eOxFAbCLyiRGP4MGYz3oII2z_1z4AWrSiYE</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Aguilera, P.A.</creator><creator>Fernández, A.</creator><creator>Reche, F.</creator><creator>Rumí, R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>20101201</creationdate><title>Hybrid Bayesian network classifiers: Application to species distribution models</title><author>Aguilera, P.A. ; Fernández, A. ; Reche, F. ; Rumí, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-9102eec65d06cea161dde8c39163c4d3d704cce5b62b357a92d1a1ba306e08a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Conservation planning</topic><topic>Discretization</topic><topic>Expert systems</topic><topic>Habitats</topic><topic>Hybrid Bayesian networks</topic><topic>Mathematical models</topic><topic>Mixtures of truncated exponentials</topic><topic>Modelling</topic><topic>Networks</topic><topic>Testudo graeca</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilera, P.A.</creatorcontrib><creatorcontrib>Fernández, A.</creatorcontrib><creatorcontrib>Reche, F.</creatorcontrib><creatorcontrib>Rumí, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilera, P.A.</au><au>Fernández, A.</au><au>Reche, F.</au><au>Rumí, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Bayesian network classifiers: Application to species distribution models</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>25</volume><issue>12</issue><spage>1630</spage><epage>1639</epage><pages>1630-1639</pages><issn>1364-8152</issn><abstract>Bayesian networks are one of the most powerful tools in the design of expert systems located in an uncertainty framework. However, normally their application is determined by the discretization of the continuous variables. In this paper the naïve Bayes (NB) and tree augmented naïve Bayes (TAN) models are developed. They are based on Mixtures of Truncated Exponentials (MTE) designed to deal with discrete and continuous variables in the same network simultaneously without any restriction. The aim is to characterize the habitat of the spur-thighed tortoise ( Testudo graeca graeca), using several continuous environmental variables, and one discrete (binary) variable representing the presence or absence of the tortoise. These models are compared with the full discrete models and the results show a better classification rate for the continuous one. Therefore, the application of continuous models instead of discrete ones avoids loss of statistical information due to the discretization. Moreover, the results of the TAN continuous model show a more spatially accurate distribution of the tortoise. The species is located in the Doñana Natural Park, and in semiarid habitats. The proposed continuous models based on MTEs are valid for the study of species predictive distribution modelling.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2010.04.016</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2010-12, Vol.25 (12), p.1630-1639
issn 1364-8152
language eng
recordid cdi_proquest_miscellaneous_759315278
source Elsevier ScienceDirect Journals Complete
subjects Bayesian analysis
Classification
Conservation planning
Discretization
Expert systems
Habitats
Hybrid Bayesian networks
Mathematical models
Mixtures of truncated exponentials
Modelling
Networks
Testudo graeca
title Hybrid Bayesian network classifiers: Application to species distribution models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Bayesian%20network%20classifiers:%20Application%20to%20species%20distribution%20models&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Aguilera,%20P.A.&rft.date=2010-12-01&rft.volume=25&rft.issue=12&rft.spage=1630&rft.epage=1639&rft.pages=1630-1639&rft.issn=1364-8152&rft_id=info:doi/10.1016/j.envsoft.2010.04.016&rft_dat=%3Cproquest_cross%3E759315278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671561399&rft_id=info:pmid/&rft_els_id=S1364815210001222&rfr_iscdi=true