Characterization and Stability Analysis of Zinc Oxide Nanoencapsulated Conjugated Linoleic Acid

Nanoencapsulation technology has a diverse range of applications, including drug-delivery systems (DDS) and cosmetic and chemical carriers, because it can deliver various bio- and organic-molecules and improve their stabilities. Conjugated linoleic acid (CLA) has health benefits, including being an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science 2010-08, Vol.75 (6), p.N63-N68
Hauptverfasser: Choy, Jin-Ho, Shin, Jiwon, Lim, Seung-Yong, Oh, Jae-Min, Oh, Mi-Hwa, Oh, Sangsuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page N68
container_issue 6
container_start_page N63
container_title Journal of food science
container_volume 75
creator Choy, Jin-Ho
Shin, Jiwon
Lim, Seung-Yong
Oh, Jae-Min
Oh, Mi-Hwa
Oh, Sangsuk
description Nanoencapsulation technology has a diverse range of applications, including drug-delivery systems (DDS) and cosmetic and chemical carriers, because it can deliver various bio- and organic-molecules and improve their stabilities. Conjugated linoleic acid (CLA) has health benefits, including being an anticancer agent, but it decreases flavor due to volatiles from oxidation. To improve the stability of CLA for food applications, nanoencapsulated CLA was synthesized for use in zinc basic salt (ZBS) and characterized by powder X-ray diffractometry, thermogravimetric analysis (TGA), elemental CHN analysis, inductively coupled plasma (ICP) analysis, UV/VIS spectroscopy, and FTIR spectroscopy. The thermal stability of nanoencapsulated CLA at 180 °C, a temperature similar to that used in cooking, was analyzed by gas chromatography. The gallery height of nanoencapsulated CLA was determined to be approximately 26 Å through powder X-ray diffractometry; therefore, the CLA molecules were closely packed with zig-zag form between the intracrystalline spaces of nano particles. Elemental CHN analysis and ICP data determined the chemical composition of nanoencapsulated CLA to be Zn₄.₈₆(OH)₈.₇₈(CLA)₀.₉₄. By TGA, it was determined about 45% (wt/wt) of weight loss corresponded to CLA, which is good agreement with the 42.13% (wt/wt) determined from high-performance liquid chromatography (HPLC) and elemental CHN analysis. UV/VIS spectroscopy and Fourier-transformed infrared (FTIR) spectroscopy showed encapsulated CLA maintained a conjugated diene structure, supporting the presence of CLA. Nanoencapsulation improved the thermal stability of CLA by about 25%, compared to pristine CLA. Practical Application: This system can be used for protection of encapsulated negatively-charged food ingredients from thermal processing.
doi_str_mv 10.1111/j.1750-3841.2010.01676.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759314325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>759314325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5556-77f69fce7fa323286564ade94705c8606d0b7f41c5a13006527761cb87c25eb53</originalsourceid><addsrcrecordid>eNqNks1v0zAYxi0EYmXwL4DFZVxS_BF_5IJUdWwwqu1QJlAvluM4wyWNi51o7f56nGX0wAHmi1_bv_ex7OcBAGI0xWm8X0-xYCijMsdTgtIuwlzw6e4JmBwOnoIJQoRkGOfiCLyIcY2GNeXPwRFBgpAiJxOg5j900Kazwd3pzvkW6raCy06XrnHdHs5a3eyji9DXcOVaA692rrLwUrfetkZvY9_ozlZw7tt1f3NfLlzrG-sMnBlXvQTPat1E--phPgbXZx-_zj9li6vzz_PZIjOMMZ4JUfOiNlbUmhJKJGc815UtcoGYkRzxCpWizrFhGlOEOCNCcGxKKQxhtmT0GJyMutvgf_U2dmrjorFNo1vr-6gEKyjOKXkkSTmS_ydzWXBZCJrId_8kkzuYCMIxT-jbv9C170P65eFmxtKD8wGSI2SCjzHYWm2D2-iwVxipIQFqrQaj1WC0GhKg7hOgdqn19YN-X25sdWj8Y3kCPozArWvs_tHC6uLsdDmUSSAbBVzs7O4goMNPxQUVTH27PFf8QpyuvojvapX4NyNfa6_0TXBRXS-TNEVYioITSX8DKHzVFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755547046</pqid></control><display><type>article</type><title>Characterization and Stability Analysis of Zinc Oxide Nanoencapsulated Conjugated Linoleic Acid</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Choy, Jin-Ho ; Shin, Jiwon ; Lim, Seung-Yong ; Oh, Jae-Min ; Oh, Mi-Hwa ; Oh, Sangsuk</creator><creatorcontrib>Choy, Jin-Ho ; Shin, Jiwon ; Lim, Seung-Yong ; Oh, Jae-Min ; Oh, Mi-Hwa ; Oh, Sangsuk</creatorcontrib><description>Nanoencapsulation technology has a diverse range of applications, including drug-delivery systems (DDS) and cosmetic and chemical carriers, because it can deliver various bio- and organic-molecules and improve their stabilities. Conjugated linoleic acid (CLA) has health benefits, including being an anticancer agent, but it decreases flavor due to volatiles from oxidation. To improve the stability of CLA for food applications, nanoencapsulated CLA was synthesized for use in zinc basic salt (ZBS) and characterized by powder X-ray diffractometry, thermogravimetric analysis (TGA), elemental CHN analysis, inductively coupled plasma (ICP) analysis, UV/VIS spectroscopy, and FTIR spectroscopy. The thermal stability of nanoencapsulated CLA at 180 °C, a temperature similar to that used in cooking, was analyzed by gas chromatography. The gallery height of nanoencapsulated CLA was determined to be approximately 26 Å through powder X-ray diffractometry; therefore, the CLA molecules were closely packed with zig-zag form between the intracrystalline spaces of nano particles. Elemental CHN analysis and ICP data determined the chemical composition of nanoencapsulated CLA to be Zn₄.₈₆(OH)₈.₇₈(CLA)₀.₉₄. By TGA, it was determined about 45% (wt/wt) of weight loss corresponded to CLA, which is good agreement with the 42.13% (wt/wt) determined from high-performance liquid chromatography (HPLC) and elemental CHN analysis. UV/VIS spectroscopy and Fourier-transformed infrared (FTIR) spectroscopy showed encapsulated CLA maintained a conjugated diene structure, supporting the presence of CLA. Nanoencapsulation improved the thermal stability of CLA by about 25%, compared to pristine CLA. Practical Application: This system can be used for protection of encapsulated negatively-charged food ingredients from thermal processing.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/j.1750-3841.2010.01676.x</identifier><identifier>PMID: 20722942</identifier><identifier>CODEN: JFDSAZ</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Chemical synthesis ; Chromatography ; conjugated linoleic acid ; Diffraction ; Fatty acids ; food analysis ; food composition ; food technology ; Food Technology - methods ; Food, Fortified ; Foods ; Fourier transforms ; Hot Temperature - adverse effects ; Inductively coupled plasma ; Linoleic Acids, Conjugated - administration &amp; dosage ; Linoleic Acids, Conjugated - analysis ; Linoleic Acids, Conjugated - chemistry ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; microencapsulation ; Microscopy, Electron, Scanning ; model food systems ; Nanocomposites ; nanoencapsulation ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nanotechnology ; Nanotechnology - methods ; Nitrates - chemistry ; Oxidation-Reduction ; oxidative stability ; Powder Diffraction ; Spectrophotometry, Atomic ; Spectroscopy ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis ; Thermal stability ; Thermogravimetry ; Zinc ; zinc basic salt ; Zinc Compounds - chemistry ; zinc oxide ; Zinc Oxide - analysis ; Zinc Oxide - chemistry</subject><ispartof>Journal of food science, 2010-08, Vol.75 (6), p.N63-N68</ispartof><rights>2010 Institute of Food Technologists</rights><rights>Copyright Institute of Food Technologists Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5556-77f69fce7fa323286564ade94705c8606d0b7f41c5a13006527761cb87c25eb53</citedby><cites>FETCH-LOGICAL-c5556-77f69fce7fa323286564ade94705c8606d0b7f41c5a13006527761cb87c25eb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1750-3841.2010.01676.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1750-3841.2010.01676.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20722942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choy, Jin-Ho</creatorcontrib><creatorcontrib>Shin, Jiwon</creatorcontrib><creatorcontrib>Lim, Seung-Yong</creatorcontrib><creatorcontrib>Oh, Jae-Min</creatorcontrib><creatorcontrib>Oh, Mi-Hwa</creatorcontrib><creatorcontrib>Oh, Sangsuk</creatorcontrib><title>Characterization and Stability Analysis of Zinc Oxide Nanoencapsulated Conjugated Linoleic Acid</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>Nanoencapsulation technology has a diverse range of applications, including drug-delivery systems (DDS) and cosmetic and chemical carriers, because it can deliver various bio- and organic-molecules and improve their stabilities. Conjugated linoleic acid (CLA) has health benefits, including being an anticancer agent, but it decreases flavor due to volatiles from oxidation. To improve the stability of CLA for food applications, nanoencapsulated CLA was synthesized for use in zinc basic salt (ZBS) and characterized by powder X-ray diffractometry, thermogravimetric analysis (TGA), elemental CHN analysis, inductively coupled plasma (ICP) analysis, UV/VIS spectroscopy, and FTIR spectroscopy. The thermal stability of nanoencapsulated CLA at 180 °C, a temperature similar to that used in cooking, was analyzed by gas chromatography. The gallery height of nanoencapsulated CLA was determined to be approximately 26 Å through powder X-ray diffractometry; therefore, the CLA molecules were closely packed with zig-zag form between the intracrystalline spaces of nano particles. Elemental CHN analysis and ICP data determined the chemical composition of nanoencapsulated CLA to be Zn₄.₈₆(OH)₈.₇₈(CLA)₀.₉₄. By TGA, it was determined about 45% (wt/wt) of weight loss corresponded to CLA, which is good agreement with the 42.13% (wt/wt) determined from high-performance liquid chromatography (HPLC) and elemental CHN analysis. UV/VIS spectroscopy and Fourier-transformed infrared (FTIR) spectroscopy showed encapsulated CLA maintained a conjugated diene structure, supporting the presence of CLA. Nanoencapsulation improved the thermal stability of CLA by about 25%, compared to pristine CLA. Practical Application: This system can be used for protection of encapsulated negatively-charged food ingredients from thermal processing.</description><subject>Chemical synthesis</subject><subject>Chromatography</subject><subject>conjugated linoleic acid</subject><subject>Diffraction</subject><subject>Fatty acids</subject><subject>food analysis</subject><subject>food composition</subject><subject>food technology</subject><subject>Food Technology - methods</subject><subject>Food, Fortified</subject><subject>Foods</subject><subject>Fourier transforms</subject><subject>Hot Temperature - adverse effects</subject><subject>Inductively coupled plasma</subject><subject>Linoleic Acids, Conjugated - administration &amp; dosage</subject><subject>Linoleic Acids, Conjugated - analysis</subject><subject>Linoleic Acids, Conjugated - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>microencapsulation</subject><subject>Microscopy, Electron, Scanning</subject><subject>model food systems</subject><subject>Nanocomposites</subject><subject>nanoencapsulation</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Nitrates - chemistry</subject><subject>Oxidation-Reduction</subject><subject>oxidative stability</subject><subject>Powder Diffraction</subject><subject>Spectrophotometry, Atomic</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><subject>Thermal stability</subject><subject>Thermogravimetry</subject><subject>Zinc</subject><subject>zinc basic salt</subject><subject>Zinc Compounds - chemistry</subject><subject>zinc oxide</subject><subject>Zinc Oxide - analysis</subject><subject>Zinc Oxide - chemistry</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1v0zAYxi0EYmXwL4DFZVxS_BF_5IJUdWwwqu1QJlAvluM4wyWNi51o7f56nGX0wAHmi1_bv_ex7OcBAGI0xWm8X0-xYCijMsdTgtIuwlzw6e4JmBwOnoIJQoRkGOfiCLyIcY2GNeXPwRFBgpAiJxOg5j900Kazwd3pzvkW6raCy06XrnHdHs5a3eyji9DXcOVaA692rrLwUrfetkZvY9_ozlZw7tt1f3NfLlzrG-sMnBlXvQTPat1E--phPgbXZx-_zj9li6vzz_PZIjOMMZ4JUfOiNlbUmhJKJGc815UtcoGYkRzxCpWizrFhGlOEOCNCcGxKKQxhtmT0GJyMutvgf_U2dmrjorFNo1vr-6gEKyjOKXkkSTmS_ydzWXBZCJrId_8kkzuYCMIxT-jbv9C170P65eFmxtKD8wGSI2SCjzHYWm2D2-iwVxipIQFqrQaj1WC0GhKg7hOgdqn19YN-X25sdWj8Y3kCPozArWvs_tHC6uLsdDmUSSAbBVzs7O4goMNPxQUVTH27PFf8QpyuvojvapX4NyNfa6_0TXBRXS-TNEVYioITSX8DKHzVFA</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Choy, Jin-Ho</creator><creator>Shin, Jiwon</creator><creator>Lim, Seung-Yong</creator><creator>Oh, Jae-Min</creator><creator>Oh, Mi-Hwa</creator><creator>Oh, Sangsuk</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201008</creationdate><title>Characterization and Stability Analysis of Zinc Oxide Nanoencapsulated Conjugated Linoleic Acid</title><author>Choy, Jin-Ho ; Shin, Jiwon ; Lim, Seung-Yong ; Oh, Jae-Min ; Oh, Mi-Hwa ; Oh, Sangsuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5556-77f69fce7fa323286564ade94705c8606d0b7f41c5a13006527761cb87c25eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemical synthesis</topic><topic>Chromatography</topic><topic>conjugated linoleic acid</topic><topic>Diffraction</topic><topic>Fatty acids</topic><topic>food analysis</topic><topic>food composition</topic><topic>food technology</topic><topic>Food Technology - methods</topic><topic>Food, Fortified</topic><topic>Foods</topic><topic>Fourier transforms</topic><topic>Hot Temperature - adverse effects</topic><topic>Inductively coupled plasma</topic><topic>Linoleic Acids, Conjugated - administration &amp; dosage</topic><topic>Linoleic Acids, Conjugated - analysis</topic><topic>Linoleic Acids, Conjugated - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>microencapsulation</topic><topic>Microscopy, Electron, Scanning</topic><topic>model food systems</topic><topic>Nanocomposites</topic><topic>nanoencapsulation</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Nitrates - chemistry</topic><topic>Oxidation-Reduction</topic><topic>oxidative stability</topic><topic>Powder Diffraction</topic><topic>Spectrophotometry, Atomic</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><topic>Thermal stability</topic><topic>Thermogravimetry</topic><topic>Zinc</topic><topic>zinc basic salt</topic><topic>Zinc Compounds - chemistry</topic><topic>zinc oxide</topic><topic>Zinc Oxide - analysis</topic><topic>Zinc Oxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choy, Jin-Ho</creatorcontrib><creatorcontrib>Shin, Jiwon</creatorcontrib><creatorcontrib>Lim, Seung-Yong</creatorcontrib><creatorcontrib>Oh, Jae-Min</creatorcontrib><creatorcontrib>Oh, Mi-Hwa</creatorcontrib><creatorcontrib>Oh, Sangsuk</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choy, Jin-Ho</au><au>Shin, Jiwon</au><au>Lim, Seung-Yong</au><au>Oh, Jae-Min</au><au>Oh, Mi-Hwa</au><au>Oh, Sangsuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and Stability Analysis of Zinc Oxide Nanoencapsulated Conjugated Linoleic Acid</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2010-08</date><risdate>2010</risdate><volume>75</volume><issue>6</issue><spage>N63</spage><epage>N68</epage><pages>N63-N68</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><coden>JFDSAZ</coden><abstract>Nanoencapsulation technology has a diverse range of applications, including drug-delivery systems (DDS) and cosmetic and chemical carriers, because it can deliver various bio- and organic-molecules and improve their stabilities. Conjugated linoleic acid (CLA) has health benefits, including being an anticancer agent, but it decreases flavor due to volatiles from oxidation. To improve the stability of CLA for food applications, nanoencapsulated CLA was synthesized for use in zinc basic salt (ZBS) and characterized by powder X-ray diffractometry, thermogravimetric analysis (TGA), elemental CHN analysis, inductively coupled plasma (ICP) analysis, UV/VIS spectroscopy, and FTIR spectroscopy. The thermal stability of nanoencapsulated CLA at 180 °C, a temperature similar to that used in cooking, was analyzed by gas chromatography. The gallery height of nanoencapsulated CLA was determined to be approximately 26 Å through powder X-ray diffractometry; therefore, the CLA molecules were closely packed with zig-zag form between the intracrystalline spaces of nano particles. Elemental CHN analysis and ICP data determined the chemical composition of nanoencapsulated CLA to be Zn₄.₈₆(OH)₈.₇₈(CLA)₀.₉₄. By TGA, it was determined about 45% (wt/wt) of weight loss corresponded to CLA, which is good agreement with the 42.13% (wt/wt) determined from high-performance liquid chromatography (HPLC) and elemental CHN analysis. UV/VIS spectroscopy and Fourier-transformed infrared (FTIR) spectroscopy showed encapsulated CLA maintained a conjugated diene structure, supporting the presence of CLA. Nanoencapsulation improved the thermal stability of CLA by about 25%, compared to pristine CLA. Practical Application: This system can be used for protection of encapsulated negatively-charged food ingredients from thermal processing.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20722942</pmid><doi>10.1111/j.1750-3841.2010.01676.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1147
ispartof Journal of food science, 2010-08, Vol.75 (6), p.N63-N68
issn 0022-1147
1750-3841
language eng
recordid cdi_proquest_miscellaneous_759314325
source MEDLINE; Wiley Online Library All Journals
subjects Chemical synthesis
Chromatography
conjugated linoleic acid
Diffraction
Fatty acids
food analysis
food composition
food technology
Food Technology - methods
Food, Fortified
Foods
Fourier transforms
Hot Temperature - adverse effects
Inductively coupled plasma
Linoleic Acids, Conjugated - administration & dosage
Linoleic Acids, Conjugated - analysis
Linoleic Acids, Conjugated - chemistry
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
microencapsulation
Microscopy, Electron, Scanning
model food systems
Nanocomposites
nanoencapsulation
Nanomaterials
Nanoparticles
Nanostructure
Nanotechnology
Nanotechnology - methods
Nitrates - chemistry
Oxidation-Reduction
oxidative stability
Powder Diffraction
Spectrophotometry, Atomic
Spectroscopy
Spectroscopy, Fourier Transform Infrared
Spectrum analysis
Thermal stability
Thermogravimetry
Zinc
zinc basic salt
Zinc Compounds - chemistry
zinc oxide
Zinc Oxide - analysis
Zinc Oxide - chemistry
title Characterization and Stability Analysis of Zinc Oxide Nanoencapsulated Conjugated Linoleic Acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20Stability%20Analysis%20of%20Zinc%20Oxide%20Nanoencapsulated%20Conjugated%20Linoleic%20Acid&rft.jtitle=Journal%20of%20food%20science&rft.au=Choy,%20Jin-Ho&rft.date=2010-08&rft.volume=75&rft.issue=6&rft.spage=N63&rft.epage=N68&rft.pages=N63-N68&rft.issn=0022-1147&rft.eissn=1750-3841&rft.coden=JFDSAZ&rft_id=info:doi/10.1111/j.1750-3841.2010.01676.x&rft_dat=%3Cproquest_cross%3E759314325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755547046&rft_id=info:pmid/20722942&rfr_iscdi=true