Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution

In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil dynamics and earthquake engineering (1984) 2010-09, Vol.30 (9), p.811-821
Hauptverfasser: Spanos, Pol D., Evangelatos, Georgios I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 821
container_issue 9
container_start_page 811
container_title Soil dynamics and earthquake engineering (1984)
container_volume 30
creator Spanos, Pol D.
Evangelatos, Georgios I.
description In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determining the time domain response of the system to an arbitrary excitation is first proposed. This approach is based on the Grunwald–Letnikov representation of a fractional derivative and on the well-known Newmark numerical integration scheme for structural dynamic problems. Next, it is shown that for the case of a stochastic excitation, in addition to the time domain solutions, a frequency domain solution can be readily determined by the method of statistical linearization. The reliability of this solution is established in a Monte Carlo simulation context using the herein adopted time domain solution scheme. Furthermore, several related parameter studies are reported.
doi_str_mv 10.1016/j.soildyn.2010.01.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759307658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0267726110000254</els_id><sourcerecordid>759307658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a980ae0faed68659ee2283f7b4164f38c0d0245b350924b3b95c9f3b4679955a3</originalsourceid><addsrcrecordid>eNqFUU2LFDEQbUTBcfUnCLmIpx7z0Ul3TiKLq8KCICt4C-l09VpDdzKmekbGkz_Cg7_PX2KGHrwKBVWk3qvHy6uq54JvBRfm1W5LCafhFLeSlzcuSqkH1UZ0ra1VI748rDZcmrZupRGPqydEO85FKzqzqX5_AtqnSMDSyDyLKdYTRvCZ0YkWmNl3XL6yDLSkjPGejSkHIHafjpAjDKw_sTH7sGCKfmIDZDz6BY9Af37-usMZ2JBmj5ERzofJn2HMx4HRUmZaMBTSqoc_1i2l6XAenlaPRj8RPLv0q-rzzdu76_f17cd3H67f3NZBtWKpve24Bz56GExntAWQslNj2zfCNKPqAh-4bHSvNLey6VVvdbCj6hvTWqu1V1fVy_XuPqdvh-LTzUgBpslHSAdyrbaKt0Z3BalXZMiJKMPo9hlnn09OcHcOwu3cJQh3DsJxUUoV3ouLgqfit3xXDEj_yFJaKZtGF9zrFQfF7hEhOwoIMcCAGcLihoT_UfoLI6unBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759307658</pqid></control><display><type>article</type><title>Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution</title><source>Access via ScienceDirect (Elsevier)</source><creator>Spanos, Pol D. ; Evangelatos, Georgios I.</creator><creatorcontrib>Spanos, Pol D. ; Evangelatos, Georgios I.</creatorcontrib><description>In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determining the time domain response of the system to an arbitrary excitation is first proposed. This approach is based on the Grunwald–Letnikov representation of a fractional derivative and on the well-known Newmark numerical integration scheme for structural dynamic problems. Next, it is shown that for the case of a stochastic excitation, in addition to the time domain solutions, a frequency domain solution can be readily determined by the method of statistical linearization. The reliability of this solution is established in a Monte Carlo simulation context using the herein adopted time domain solution scheme. Furthermore, several related parameter studies are reported.</description><identifier>ISSN: 0267-7261</identifier><identifier>EISSN: 1879-341X</identifier><identifier>DOI: 10.1016/j.soildyn.2010.01.013</identifier><identifier>CODEN: SDEEEJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Earthquake response ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Fractional derivatives ; Integration scheme ; Internal geophysics ; Natural hazards: prediction, damages, etc ; Random excitation ; Statistical linearization</subject><ispartof>Soil dynamics and earthquake engineering (1984), 2010-09, Vol.30 (9), p.811-821</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a980ae0faed68659ee2283f7b4164f38c0d0245b350924b3b95c9f3b4679955a3</citedby><cites>FETCH-LOGICAL-c371t-a980ae0faed68659ee2283f7b4164f38c0d0245b350924b3b95c9f3b4679955a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.soildyn.2010.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22922445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Spanos, Pol D.</creatorcontrib><creatorcontrib>Evangelatos, Georgios I.</creatorcontrib><title>Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution</title><title>Soil dynamics and earthquake engineering (1984)</title><description>In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determining the time domain response of the system to an arbitrary excitation is first proposed. This approach is based on the Grunwald–Letnikov representation of a fractional derivative and on the well-known Newmark numerical integration scheme for structural dynamic problems. Next, it is shown that for the case of a stochastic excitation, in addition to the time domain solutions, a frequency domain solution can be readily determined by the method of statistical linearization. The reliability of this solution is established in a Monte Carlo simulation context using the herein adopted time domain solution scheme. Furthermore, several related parameter studies are reported.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquake response</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Fractional derivatives</subject><subject>Integration scheme</subject><subject>Internal geophysics</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Random excitation</subject><subject>Statistical linearization</subject><issn>0267-7261</issn><issn>1879-341X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUU2LFDEQbUTBcfUnCLmIpx7z0Ul3TiKLq8KCICt4C-l09VpDdzKmekbGkz_Cg7_PX2KGHrwKBVWk3qvHy6uq54JvBRfm1W5LCafhFLeSlzcuSqkH1UZ0ra1VI748rDZcmrZupRGPqydEO85FKzqzqX5_AtqnSMDSyDyLKdYTRvCZ0YkWmNl3XL6yDLSkjPGejSkHIHafjpAjDKw_sTH7sGCKfmIDZDz6BY9Af37-usMZ2JBmj5ERzofJn2HMx4HRUmZaMBTSqoc_1i2l6XAenlaPRj8RPLv0q-rzzdu76_f17cd3H67f3NZBtWKpve24Bz56GExntAWQslNj2zfCNKPqAh-4bHSvNLey6VVvdbCj6hvTWqu1V1fVy_XuPqdvh-LTzUgBpslHSAdyrbaKt0Z3BalXZMiJKMPo9hlnn09OcHcOwu3cJQh3DsJxUUoV3ouLgqfit3xXDEj_yFJaKZtGF9zrFQfF7hEhOwoIMcCAGcLihoT_UfoLI6unBA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Spanos, Pol D.</creator><creator>Evangelatos, Georgios I.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20100901</creationdate><title>Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution</title><author>Spanos, Pol D. ; Evangelatos, Georgios I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a980ae0faed68659ee2283f7b4164f38c0d0245b350924b3b95c9f3b4679955a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquake response</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Fractional derivatives</topic><topic>Integration scheme</topic><topic>Internal geophysics</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Random excitation</topic><topic>Statistical linearization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spanos, Pol D.</creatorcontrib><creatorcontrib>Evangelatos, Georgios I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spanos, Pol D.</au><au>Evangelatos, Georgios I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution</atitle><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>30</volume><issue>9</issue><spage>811</spage><epage>821</epage><pages>811-821</pages><issn>0267-7261</issn><eissn>1879-341X</eissn><coden>SDEEEJ</coden><abstract>In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determining the time domain response of the system to an arbitrary excitation is first proposed. This approach is based on the Grunwald–Letnikov representation of a fractional derivative and on the well-known Newmark numerical integration scheme for structural dynamic problems. Next, it is shown that for the case of a stochastic excitation, in addition to the time domain solutions, a frequency domain solution can be readily determined by the method of statistical linearization. The reliability of this solution is established in a Monte Carlo simulation context using the herein adopted time domain solution scheme. Furthermore, several related parameter studies are reported.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.soildyn.2010.01.013</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0267-7261
ispartof Soil dynamics and earthquake engineering (1984), 2010-09, Vol.30 (9), p.811-821
issn 0267-7261
1879-341X
language eng
recordid cdi_proquest_miscellaneous_759307658
source Access via ScienceDirect (Elsevier)
subjects Earth sciences
Earth, ocean, space
Earthquake response
Earthquakes, seismology
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Fractional derivatives
Integration scheme
Internal geophysics
Natural hazards: prediction, damages, etc
Random excitation
Statistical linearization
title Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20of%20a%20non-linear%20system%20with%20restoring%20forces%20governed%20by%20fractional%20derivatives%E2%80%94Time%20domain%20simulation%20and%20statistical%20linearization%20solution&rft.jtitle=Soil%20dynamics%20and%20earthquake%20engineering%20(1984)&rft.au=Spanos,%20Pol%20D.&rft.date=2010-09-01&rft.volume=30&rft.issue=9&rft.spage=811&rft.epage=821&rft.pages=811-821&rft.issn=0267-7261&rft.eissn=1879-341X&rft.coden=SDEEEJ&rft_id=info:doi/10.1016/j.soildyn.2010.01.013&rft_dat=%3Cproquest_cross%3E759307658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759307658&rft_id=info:pmid/&rft_els_id=S0267726110000254&rfr_iscdi=true