Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution
In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determ...
Gespeichert in:
Veröffentlicht in: | Soil dynamics and earthquake engineering (1984) 2010-09, Vol.30 (9), p.811-821 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 821 |
---|---|
container_issue | 9 |
container_start_page | 811 |
container_title | Soil dynamics and earthquake engineering (1984) |
container_volume | 30 |
creator | Spanos, Pol D. Evangelatos, Georgios I. |
description | In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determining the time domain response of the system to an arbitrary excitation is first proposed. This approach is based on the Grunwald–Letnikov representation of a fractional derivative and on the well-known Newmark numerical integration scheme for structural dynamic problems. Next, it is shown that for the case of a stochastic excitation, in addition to the time domain solutions, a frequency domain solution can be readily determined by the method of statistical linearization. The reliability of this solution is established in a Monte Carlo simulation context using the herein adopted time domain solution scheme. Furthermore, several related parameter studies are reported. |
doi_str_mv | 10.1016/j.soildyn.2010.01.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759307658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0267726110000254</els_id><sourcerecordid>759307658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a980ae0faed68659ee2283f7b4164f38c0d0245b350924b3b95c9f3b4679955a3</originalsourceid><addsrcrecordid>eNqFUU2LFDEQbUTBcfUnCLmIpx7z0Ul3TiKLq8KCICt4C-l09VpDdzKmekbGkz_Cg7_PX2KGHrwKBVWk3qvHy6uq54JvBRfm1W5LCafhFLeSlzcuSqkH1UZ0ra1VI748rDZcmrZupRGPqydEO85FKzqzqX5_AtqnSMDSyDyLKdYTRvCZ0YkWmNl3XL6yDLSkjPGejSkHIHafjpAjDKw_sTH7sGCKfmIDZDz6BY9Af37-usMZ2JBmj5ERzofJn2HMx4HRUmZaMBTSqoc_1i2l6XAenlaPRj8RPLv0q-rzzdu76_f17cd3H67f3NZBtWKpve24Bz56GExntAWQslNj2zfCNKPqAh-4bHSvNLey6VVvdbCj6hvTWqu1V1fVy_XuPqdvh-LTzUgBpslHSAdyrbaKt0Z3BalXZMiJKMPo9hlnn09OcHcOwu3cJQh3DsJxUUoV3ouLgqfit3xXDEj_yFJaKZtGF9zrFQfF7hEhOwoIMcCAGcLihoT_UfoLI6unBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759307658</pqid></control><display><type>article</type><title>Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution</title><source>Access via ScienceDirect (Elsevier)</source><creator>Spanos, Pol D. ; Evangelatos, Georgios I.</creator><creatorcontrib>Spanos, Pol D. ; Evangelatos, Georgios I.</creatorcontrib><description>In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determining the time domain response of the system to an arbitrary excitation is first proposed. This approach is based on the Grunwald–Letnikov representation of a fractional derivative and on the well-known Newmark numerical integration scheme for structural dynamic problems. Next, it is shown that for the case of a stochastic excitation, in addition to the time domain solutions, a frequency domain solution can be readily determined by the method of statistical linearization. The reliability of this solution is established in a Monte Carlo simulation context using the herein adopted time domain solution scheme. Furthermore, several related parameter studies are reported.</description><identifier>ISSN: 0267-7261</identifier><identifier>EISSN: 1879-341X</identifier><identifier>DOI: 10.1016/j.soildyn.2010.01.013</identifier><identifier>CODEN: SDEEEJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Earthquake response ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Fractional derivatives ; Integration scheme ; Internal geophysics ; Natural hazards: prediction, damages, etc ; Random excitation ; Statistical linearization</subject><ispartof>Soil dynamics and earthquake engineering (1984), 2010-09, Vol.30 (9), p.811-821</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a980ae0faed68659ee2283f7b4164f38c0d0245b350924b3b95c9f3b4679955a3</citedby><cites>FETCH-LOGICAL-c371t-a980ae0faed68659ee2283f7b4164f38c0d0245b350924b3b95c9f3b4679955a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.soildyn.2010.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22922445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Spanos, Pol D.</creatorcontrib><creatorcontrib>Evangelatos, Georgios I.</creatorcontrib><title>Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution</title><title>Soil dynamics and earthquake engineering (1984)</title><description>In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determining the time domain response of the system to an arbitrary excitation is first proposed. This approach is based on the Grunwald–Letnikov representation of a fractional derivative and on the well-known Newmark numerical integration scheme for structural dynamic problems. Next, it is shown that for the case of a stochastic excitation, in addition to the time domain solutions, a frequency domain solution can be readily determined by the method of statistical linearization. The reliability of this solution is established in a Monte Carlo simulation context using the herein adopted time domain solution scheme. Furthermore, several related parameter studies are reported.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquake response</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Fractional derivatives</subject><subject>Integration scheme</subject><subject>Internal geophysics</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Random excitation</subject><subject>Statistical linearization</subject><issn>0267-7261</issn><issn>1879-341X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUU2LFDEQbUTBcfUnCLmIpx7z0Ul3TiKLq8KCICt4C-l09VpDdzKmekbGkz_Cg7_PX2KGHrwKBVWk3qvHy6uq54JvBRfm1W5LCafhFLeSlzcuSqkH1UZ0ra1VI748rDZcmrZupRGPqydEO85FKzqzqX5_AtqnSMDSyDyLKdYTRvCZ0YkWmNl3XL6yDLSkjPGejSkHIHafjpAjDKw_sTH7sGCKfmIDZDz6BY9Af37-usMZ2JBmj5ERzofJn2HMx4HRUmZaMBTSqoc_1i2l6XAenlaPRj8RPLv0q-rzzdu76_f17cd3H67f3NZBtWKpve24Bz56GExntAWQslNj2zfCNKPqAh-4bHSvNLey6VVvdbCj6hvTWqu1V1fVy_XuPqdvh-LTzUgBpslHSAdyrbaKt0Z3BalXZMiJKMPo9hlnn09OcHcOwu3cJQh3DsJxUUoV3ouLgqfit3xXDEj_yFJaKZtGF9zrFQfF7hEhOwoIMcCAGcLihoT_UfoLI6unBA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Spanos, Pol D.</creator><creator>Evangelatos, Georgios I.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20100901</creationdate><title>Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution</title><author>Spanos, Pol D. ; Evangelatos, Georgios I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a980ae0faed68659ee2283f7b4164f38c0d0245b350924b3b95c9f3b4679955a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquake response</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Fractional derivatives</topic><topic>Integration scheme</topic><topic>Internal geophysics</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Random excitation</topic><topic>Statistical linearization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spanos, Pol D.</creatorcontrib><creatorcontrib>Evangelatos, Georgios I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spanos, Pol D.</au><au>Evangelatos, Georgios I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution</atitle><jtitle>Soil dynamics and earthquake engineering (1984)</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>30</volume><issue>9</issue><spage>811</spage><epage>821</epage><pages>811-821</pages><issn>0267-7261</issn><eissn>1879-341X</eissn><coden>SDEEEJ</coden><abstract>In this paper, the random response of a non-linear system comprising frequency dependent restoring force terms is examined. These terms are accurately modeled in seismic isolation and in many other applications using fractional derivatives. In this context, an efficient numerical approach for determining the time domain response of the system to an arbitrary excitation is first proposed. This approach is based on the Grunwald–Letnikov representation of a fractional derivative and on the well-known Newmark numerical integration scheme for structural dynamic problems. Next, it is shown that for the case of a stochastic excitation, in addition to the time domain solutions, a frequency domain solution can be readily determined by the method of statistical linearization. The reliability of this solution is established in a Monte Carlo simulation context using the herein adopted time domain solution scheme. Furthermore, several related parameter studies are reported.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.soildyn.2010.01.013</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0267-7261 |
ispartof | Soil dynamics and earthquake engineering (1984), 2010-09, Vol.30 (9), p.811-821 |
issn | 0267-7261 1879-341X |
language | eng |
recordid | cdi_proquest_miscellaneous_759307658 |
source | Access via ScienceDirect (Elsevier) |
subjects | Earth sciences Earth, ocean, space Earthquake response Earthquakes, seismology Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Fractional derivatives Integration scheme Internal geophysics Natural hazards: prediction, damages, etc Random excitation Statistical linearization |
title | Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20of%20a%20non-linear%20system%20with%20restoring%20forces%20governed%20by%20fractional%20derivatives%E2%80%94Time%20domain%20simulation%20and%20statistical%20linearization%20solution&rft.jtitle=Soil%20dynamics%20and%20earthquake%20engineering%20(1984)&rft.au=Spanos,%20Pol%20D.&rft.date=2010-09-01&rft.volume=30&rft.issue=9&rft.spage=811&rft.epage=821&rft.pages=811-821&rft.issn=0267-7261&rft.eissn=1879-341X&rft.coden=SDEEEJ&rft_id=info:doi/10.1016/j.soildyn.2010.01.013&rft_dat=%3Cproquest_cross%3E759307658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759307658&rft_id=info:pmid/&rft_els_id=S0267726110000254&rfr_iscdi=true |