Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim

Refined crystal structures are reported for complexes of Escherichia coli and chicken dihydrofolate reductase containing the antibiotic trimethoprim (TMP). Structural comparison of these two complexes reveals major geometrical differences in TMP binding that may be important in understanding the ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1985-01, Vol.260 (1), p.381-391
Hauptverfasser: Matthews, D A, Bolin, J T, Burridge, J M, Filman, D J, Volz, K W, Kaufman, B T, Beddell, C R, Champness, J N, Stammers, D K, Kraut, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 1
container_start_page 381
container_title The Journal of biological chemistry
container_volume 260
creator Matthews, D A
Bolin, J T
Burridge, J M
Filman, D J
Volz, K W
Kaufman, B T
Beddell, C R
Champness, J N
Stammers, D K
Kraut, J
description Refined crystal structures are reported for complexes of Escherichia coli and chicken dihydrofolate reductase containing the antibiotic trimethoprim (TMP). Structural comparison of these two complexes reveals major geometrical differences in TMP binding that may be important in understanding the stereo-chemical basis of this inhibitor's selectivity for bacterial dihydrofolate reductases. For TMP bound to chicken dihydrofolate reductase we observe an altered binding geometry in which the 2,4-diaminopyrimidine occupies a position in closer proximity (by approximately 1 A) to helix alpha B compared to the pyrimidine position for TMP or methotrexate bound to E. coli dihydrofolate reductase. One important consequence of this deeper insertion of the pyrimidine into the active site of chicken dihydrofolate reductase is the loss of a potential hydrogen bond that would otherwise form between the carbonyl oxygen of Val-115 and the inhibitor's 4-amino group. In addition, for TMP bound to E. coli dihydrofolate reductase, the inhibitor's benzyl side chain is positioned low in the active-site pocket pointing down toward the nicotinamide-binding site, whereas, in chicken dihydrofolate reductase, the benzyl group is accommodated in a side channel running upward and away from the cofactor. As a result, the torsion angles about the C5-C7 and C7-C1' bonds for TMP bound to the bacterial reductase (177 degrees, 76 degrees) differ significantly from the corresponding angles for TMP bound to chicken dihydrofolate reductase (-85 degrees, 102 degrees). Finally, when TMP binds to the chicken holoenzyme, the Tyr-31 side chain undergoes a large conformational change (average movement is 5.4 A for all atoms beyond C beta), rotating down into a new position where it hydrogen bonds via an intervening water molecule to the backbone carbonyl oxygen of Trp-24.
doi_str_mv 10.1016/S0021-9258(18)89743-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75923265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818897435</els_id><sourcerecordid>75923265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-ba185e4f9bf5d63515e64128c2fd90a45ad11a1be912c0c4e2044c631b3ac2203</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhoMo6-zqT1iIIKKH1iSd9KRPIsuuCguCH-AtpCvV29GeZE3SI_PvzewMczWXOtTzVlUeQi45e8sZ7959Y0zwphdKv-b6je7Xsm3UI7LiTLdNq_jPx2R1Qp6S85x_sfpkz8_IWas1W0uxItuvOPqAjkLa5WJnmktaoCwJM40jvc4wYfIweUshzp7aUNHJw28MdPZbTNT5aedSHONsC9KErsZtxoqHYn3w4Y4OcamxkvwGyxTva31Gnox2zvj8WC_Ij5vr71efmtsvHz9ffbhtQHaiNIPlWqEc-2FUrqufUthJLjSI0fXMSmUd55YP2HMBDCQKJiV0LR9aC0Kw9oK8Osy9T_HPgrmYjc-A82wDxiWbtepFKzpVQXUAIcWcE45mf6ZNO8OZ2fs2D77NXqbh2jz4Nvvc5XHBMmzQnVJHwbX_8ti3Gew8JhvA5xPW1yOV0hV7ccAmfzf99QnN4GNVvzGiq_vrOF6Z9wcGq7Ctx2QyeAyArvJQjIv-P8f-A3zlqhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75923265</pqid></control><display><type>article</type><title>Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Matthews, D A ; Bolin, J T ; Burridge, J M ; Filman, D J ; Volz, K W ; Kaufman, B T ; Beddell, C R ; Champness, J N ; Stammers, D K ; Kraut, J</creator><creatorcontrib>Matthews, D A ; Bolin, J T ; Burridge, J M ; Filman, D J ; Volz, K W ; Kaufman, B T ; Beddell, C R ; Champness, J N ; Stammers, D K ; Kraut, J</creatorcontrib><description>Refined crystal structures are reported for complexes of Escherichia coli and chicken dihydrofolate reductase containing the antibiotic trimethoprim (TMP). Structural comparison of these two complexes reveals major geometrical differences in TMP binding that may be important in understanding the stereo-chemical basis of this inhibitor's selectivity for bacterial dihydrofolate reductases. For TMP bound to chicken dihydrofolate reductase we observe an altered binding geometry in which the 2,4-diaminopyrimidine occupies a position in closer proximity (by approximately 1 A) to helix alpha B compared to the pyrimidine position for TMP or methotrexate bound to E. coli dihydrofolate reductase. One important consequence of this deeper insertion of the pyrimidine into the active site of chicken dihydrofolate reductase is the loss of a potential hydrogen bond that would otherwise form between the carbonyl oxygen of Val-115 and the inhibitor's 4-amino group. In addition, for TMP bound to E. coli dihydrofolate reductase, the inhibitor's benzyl side chain is positioned low in the active-site pocket pointing down toward the nicotinamide-binding site, whereas, in chicken dihydrofolate reductase, the benzyl group is accommodated in a side channel running upward and away from the cofactor. As a result, the torsion angles about the C5-C7 and C7-C1' bonds for TMP bound to the bacterial reductase (177 degrees, 76 degrees) differ significantly from the corresponding angles for TMP bound to chicken dihydrofolate reductase (-85 degrees, 102 degrees). Finally, when TMP binds to the chicken holoenzyme, the Tyr-31 side chain undergoes a large conformational change (average movement is 5.4 A for all atoms beyond C beta), rotating down into a new position where it hydrogen bonds via an intervening water molecule to the backbone carbonyl oxygen of Trp-24.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)89743-5</identifier><identifier>PMID: 3880742</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Chickens ; Crystalline structure ; Escherichia coli - enzymology ; Fundamental and applied biological sciences. Psychology ; Liver - enzymology ; Models, Molecular ; Molecular biophysics ; Protein Binding ; Protein Conformation ; Species Specificity ; Structure in molecular biology ; Tetrahydrofolate Dehydrogenase - isolation &amp; purification ; Tetrahydrofolate Dehydrogenase - metabolism ; Trimethoprim - metabolism ; X-Ray Diffraction</subject><ispartof>The Journal of biological chemistry, 1985-01, Vol.260 (1), p.381-391</ispartof><rights>1985 © 1985 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-ba185e4f9bf5d63515e64128c2fd90a45ad11a1be912c0c4e2044c631b3ac2203</citedby><cites>FETCH-LOGICAL-c462t-ba185e4f9bf5d63515e64128c2fd90a45ad11a1be912c0c4e2044c631b3ac2203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9220558$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3880742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthews, D A</creatorcontrib><creatorcontrib>Bolin, J T</creatorcontrib><creatorcontrib>Burridge, J M</creatorcontrib><creatorcontrib>Filman, D J</creatorcontrib><creatorcontrib>Volz, K W</creatorcontrib><creatorcontrib>Kaufman, B T</creatorcontrib><creatorcontrib>Beddell, C R</creatorcontrib><creatorcontrib>Champness, J N</creatorcontrib><creatorcontrib>Stammers, D K</creatorcontrib><creatorcontrib>Kraut, J</creatorcontrib><title>Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Refined crystal structures are reported for complexes of Escherichia coli and chicken dihydrofolate reductase containing the antibiotic trimethoprim (TMP). Structural comparison of these two complexes reveals major geometrical differences in TMP binding that may be important in understanding the stereo-chemical basis of this inhibitor's selectivity for bacterial dihydrofolate reductases. For TMP bound to chicken dihydrofolate reductase we observe an altered binding geometry in which the 2,4-diaminopyrimidine occupies a position in closer proximity (by approximately 1 A) to helix alpha B compared to the pyrimidine position for TMP or methotrexate bound to E. coli dihydrofolate reductase. One important consequence of this deeper insertion of the pyrimidine into the active site of chicken dihydrofolate reductase is the loss of a potential hydrogen bond that would otherwise form between the carbonyl oxygen of Val-115 and the inhibitor's 4-amino group. In addition, for TMP bound to E. coli dihydrofolate reductase, the inhibitor's benzyl side chain is positioned low in the active-site pocket pointing down toward the nicotinamide-binding site, whereas, in chicken dihydrofolate reductase, the benzyl group is accommodated in a side channel running upward and away from the cofactor. As a result, the torsion angles about the C5-C7 and C7-C1' bonds for TMP bound to the bacterial reductase (177 degrees, 76 degrees) differ significantly from the corresponding angles for TMP bound to chicken dihydrofolate reductase (-85 degrees, 102 degrees). Finally, when TMP binds to the chicken holoenzyme, the Tyr-31 side chain undergoes a large conformational change (average movement is 5.4 A for all atoms beyond C beta), rotating down into a new position where it hydrogen bonds via an intervening water molecule to the backbone carbonyl oxygen of Trp-24.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Chickens</subject><subject>Crystalline structure</subject><subject>Escherichia coli - enzymology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Liver - enzymology</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Species Specificity</subject><subject>Structure in molecular biology</subject><subject>Tetrahydrofolate Dehydrogenase - isolation &amp; purification</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Trimethoprim - metabolism</subject><subject>X-Ray Diffraction</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE2LFDEQhoMo6-zqT1iIIKKH1iSd9KRPIsuuCguCH-AtpCvV29GeZE3SI_PvzewMczWXOtTzVlUeQi45e8sZ7959Y0zwphdKv-b6je7Xsm3UI7LiTLdNq_jPx2R1Qp6S85x_sfpkz8_IWas1W0uxItuvOPqAjkLa5WJnmktaoCwJM40jvc4wYfIweUshzp7aUNHJw28MdPZbTNT5aedSHONsC9KErsZtxoqHYn3w4Y4OcamxkvwGyxTva31Gnox2zvj8WC_Ij5vr71efmtsvHz9ffbhtQHaiNIPlWqEc-2FUrqufUthJLjSI0fXMSmUd55YP2HMBDCQKJiV0LR9aC0Kw9oK8Osy9T_HPgrmYjc-A82wDxiWbtepFKzpVQXUAIcWcE45mf6ZNO8OZ2fs2D77NXqbh2jz4Nvvc5XHBMmzQnVJHwbX_8ti3Gew8JhvA5xPW1yOV0hV7ccAmfzf99QnN4GNVvzGiq_vrOF6Z9wcGq7Ctx2QyeAyArvJQjIv-P8f-A3zlqhs</recordid><startdate>19850110</startdate><enddate>19850110</enddate><creator>Matthews, D A</creator><creator>Bolin, J T</creator><creator>Burridge, J M</creator><creator>Filman, D J</creator><creator>Volz, K W</creator><creator>Kaufman, B T</creator><creator>Beddell, C R</creator><creator>Champness, J N</creator><creator>Stammers, D K</creator><creator>Kraut, J</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19850110</creationdate><title>Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim</title><author>Matthews, D A ; Bolin, J T ; Burridge, J M ; Filman, D J ; Volz, K W ; Kaufman, B T ; Beddell, C R ; Champness, J N ; Stammers, D K ; Kraut, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-ba185e4f9bf5d63515e64128c2fd90a45ad11a1be912c0c4e2044c631b3ac2203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Chickens</topic><topic>Crystalline structure</topic><topic>Escherichia coli - enzymology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Liver - enzymology</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Species Specificity</topic><topic>Structure in molecular biology</topic><topic>Tetrahydrofolate Dehydrogenase - isolation &amp; purification</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Trimethoprim - metabolism</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthews, D A</creatorcontrib><creatorcontrib>Bolin, J T</creatorcontrib><creatorcontrib>Burridge, J M</creatorcontrib><creatorcontrib>Filman, D J</creatorcontrib><creatorcontrib>Volz, K W</creatorcontrib><creatorcontrib>Kaufman, B T</creatorcontrib><creatorcontrib>Beddell, C R</creatorcontrib><creatorcontrib>Champness, J N</creatorcontrib><creatorcontrib>Stammers, D K</creatorcontrib><creatorcontrib>Kraut, J</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthews, D A</au><au>Bolin, J T</au><au>Burridge, J M</au><au>Filman, D J</au><au>Volz, K W</au><au>Kaufman, B T</au><au>Beddell, C R</au><au>Champness, J N</au><au>Stammers, D K</au><au>Kraut, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1985-01-10</date><risdate>1985</risdate><volume>260</volume><issue>1</issue><spage>381</spage><epage>391</epage><pages>381-391</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>Refined crystal structures are reported for complexes of Escherichia coli and chicken dihydrofolate reductase containing the antibiotic trimethoprim (TMP). Structural comparison of these two complexes reveals major geometrical differences in TMP binding that may be important in understanding the stereo-chemical basis of this inhibitor's selectivity for bacterial dihydrofolate reductases. For TMP bound to chicken dihydrofolate reductase we observe an altered binding geometry in which the 2,4-diaminopyrimidine occupies a position in closer proximity (by approximately 1 A) to helix alpha B compared to the pyrimidine position for TMP or methotrexate bound to E. coli dihydrofolate reductase. One important consequence of this deeper insertion of the pyrimidine into the active site of chicken dihydrofolate reductase is the loss of a potential hydrogen bond that would otherwise form between the carbonyl oxygen of Val-115 and the inhibitor's 4-amino group. In addition, for TMP bound to E. coli dihydrofolate reductase, the inhibitor's benzyl side chain is positioned low in the active-site pocket pointing down toward the nicotinamide-binding site, whereas, in chicken dihydrofolate reductase, the benzyl group is accommodated in a side channel running upward and away from the cofactor. As a result, the torsion angles about the C5-C7 and C7-C1' bonds for TMP bound to the bacterial reductase (177 degrees, 76 degrees) differ significantly from the corresponding angles for TMP bound to chicken dihydrofolate reductase (-85 degrees, 102 degrees). Finally, when TMP binds to the chicken holoenzyme, the Tyr-31 side chain undergoes a large conformational change (average movement is 5.4 A for all atoms beyond C beta), rotating down into a new position where it hydrogen bonds via an intervening water molecule to the backbone carbonyl oxygen of Trp-24.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>3880742</pmid><doi>10.1016/S0021-9258(18)89743-5</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1985-01, Vol.260 (1), p.381-391
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_75923265
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Biological and medical sciences
Chickens
Crystalline structure
Escherichia coli - enzymology
Fundamental and applied biological sciences. Psychology
Liver - enzymology
Models, Molecular
Molecular biophysics
Protein Binding
Protein Conformation
Species Specificity
Structure in molecular biology
Tetrahydrofolate Dehydrogenase - isolation & purification
Tetrahydrofolate Dehydrogenase - metabolism
Trimethoprim - metabolism
X-Ray Diffraction
title Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20crystal%20structures%20of%20Escherichia%20coli%20and%20chicken%20liver%20dihydrofolate%20reductase%20containing%20bound%20trimethoprim&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Matthews,%20D%20A&rft.date=1985-01-10&rft.volume=260&rft.issue=1&rft.spage=381&rft.epage=391&rft.pages=381-391&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)89743-5&rft_dat=%3Cproquest_cross%3E75923265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75923265&rft_id=info:pmid/3880742&rft_els_id=S0021925818897435&rfr_iscdi=true