Circular dichroic spectra of apolipoprotein E in model complexes and cholesterol-rich lipoproteins: lipid contribution

Lipid-free apolipoprotein E (apo E) and canine apo E HDLc, a cholesterol-rich lipoprotein containing apo E as the only apolipoprotein, show very different circular dichroism (CD) spectra. To determine the cause of the spectral difference, we estimated the CD contribution of phospholipid, cholesterol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1984-12, Vol.23 (26), p.6530-6538
Hauptverfasser: Chen, G. Chi, Guo, Luke S. S, Hamilton, Robert L, Gordon, Virginia, Richards, E. Glen, Kane, John P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipid-free apolipoprotein E (apo E) and canine apo E HDLc, a cholesterol-rich lipoprotein containing apo E as the only apolipoprotein, show very different circular dichroism (CD) spectra. To determine the cause of the spectral difference, we estimated the CD contribution of phospholipid, cholesterol, and cholesteryl ester in liposomes and microemulsions. We prepared microemulsions, containing nearly equal amounts of egg phosphatidylcholine (PC) and cholesteryl oleate (mean diameter 320 A), by an injection technique. Both microemulsions and cholesterol-containing liposomes exhibit intense negative CD bands in the far-ultraviolet region. Lipids contribute about 20% of the spectral difference between apo E and apo E HDLc at 222 nm, and about 60% of the spectral difference at 208 nm. The remainder of the spectral difference is attributable to lipid-protein interaction corresponding to a 15-30% increase in helicity of apo E. CD analysis indicates that the helical content of apo E in apo E HDLc resembles that in the ternary complex apo E-PC-cholesterol (or apo E-PC-cholesteryl ester) more than that in the binary complex apo E-PC, suggesting that cholesterol affects the conformation of apo E. Our data indicate that in going from a lipid-free state to a lipid environment, apo E undergoes a random to helix transition, assuming the maximal helicity predicted from its primary structure.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00321a039