Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy

To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1993-07, Vol.94 (1), p.29-36
Hauptverfasser: ZHONG, P, CHUONG, C. J, PREMINGER, G. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 29
container_title The Journal of the Acoustical Society of America
container_volume 94
creator ZHONG, P
CHUONG, C. J
PREMINGER, G. M
description To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.
doi_str_mv 10.1121/1.407088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75901521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75901521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-18e4fcd4d3b9d7fd541cbcc19eeba3096bf48951c6c8a24d8a7b8eed54d8a1273</originalsourceid><addsrcrecordid>eNpNkMFO3DAQhq2qCBZaqS-A5ENVccliJ87G7g2hFlZCggM9R5OJU0ydderxUvYZeOkaZYU4eaz55h_Nx9gXKZZSlvJcLpVohNYf2ELWpSh0XaqPbCGEkIUyq9UROyZ6zN9aV-aQHeqqVk1tFuzlLoYJfkNyYcPDwOkh4B_-D54scbfh1gMlh5yCdz1xhC3Znne7XD25NE-NDmN4tIm7cQJMS75ef-cX0-QdzsBrznOKgCFOIVrw77Zw79JDSNFNtPvEDgbwZD_v3xP26-eP-8vr4ub2an15cVNgWZapkNqqAXvVV53pm6GvlcQOURprO6iEWXWD0qaWuEINpeo1NJ22NnO5lGVTnbBvc-4Uw9-tpdSOjtB6DxsbttRmMSJblBk8m8F8IFG0QztFN0LctVK0r95b2c7eM3q6z9x2o-3fwL3o3P-67wMh-CHCBh29YUqYujKi-g_JF40m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75901521</pqid></control><display><type>article</type><title>Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy</title><source>MEDLINE</source><source>Acoustical Society of America (AIP)</source><creator>ZHONG, P ; CHUONG, C. J ; PREMINGER, G. M</creator><creatorcontrib>ZHONG, P ; CHUONG, C. J ; PREMINGER, G. M</creatorcontrib><description>To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.407088</identifier><identifier>PMID: 8354759</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Kidney Calculi - surgery ; Kidney Diseases - surgery ; Lithotripsy - methods ; Models, Theoretical ; Nonlinear acoustics ; Nonlinear acoustics, macrosonics ; Physical Phenomena ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Urology</subject><ispartof>The Journal of the Acoustical Society of America, 1993-07, Vol.94 (1), p.29-36</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-18e4fcd4d3b9d7fd541cbcc19eeba3096bf48951c6c8a24d8a7b8eed54d8a1273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4095390$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8354759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ZHONG, P</creatorcontrib><creatorcontrib>CHUONG, C. J</creatorcontrib><creatorcontrib>PREMINGER, G. M</creatorcontrib><title>Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Kidney Calculi - surgery</subject><subject>Kidney Diseases - surgery</subject><subject>Lithotripsy - methods</subject><subject>Models, Theoretical</subject><subject>Nonlinear acoustics</subject><subject>Nonlinear acoustics, macrosonics</subject><subject>Physical Phenomena</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Urology</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMFO3DAQhq2qCBZaqS-A5ENVccliJ87G7g2hFlZCggM9R5OJU0ydderxUvYZeOkaZYU4eaz55h_Nx9gXKZZSlvJcLpVohNYf2ELWpSh0XaqPbCGEkIUyq9UROyZ6zN9aV-aQHeqqVk1tFuzlLoYJfkNyYcPDwOkh4B_-D54scbfh1gMlh5yCdz1xhC3Znne7XD25NE-NDmN4tIm7cQJMS75ef-cX0-QdzsBrznOKgCFOIVrw77Zw79JDSNFNtPvEDgbwZD_v3xP26-eP-8vr4ub2an15cVNgWZapkNqqAXvVV53pm6GvlcQOURprO6iEWXWD0qaWuEINpeo1NJ22NnO5lGVTnbBvc-4Uw9-tpdSOjtB6DxsbttRmMSJblBk8m8F8IFG0QztFN0LctVK0r95b2c7eM3q6z9x2o-3fwL3o3P-67wMh-CHCBh29YUqYujKi-g_JF40m</recordid><startdate>199307</startdate><enddate>199307</enddate><creator>ZHONG, P</creator><creator>CHUONG, C. J</creator><creator>PREMINGER, G. M</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>199307</creationdate><title>Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy</title><author>ZHONG, P ; CHUONG, C. J ; PREMINGER, G. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-18e4fcd4d3b9d7fd541cbcc19eeba3096bf48951c6c8a24d8a7b8eed54d8a1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Kidney Calculi - surgery</topic><topic>Kidney Diseases - surgery</topic><topic>Lithotripsy - methods</topic><topic>Models, Theoretical</topic><topic>Nonlinear acoustics</topic><topic>Nonlinear acoustics, macrosonics</topic><topic>Physical Phenomena</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHONG, P</creatorcontrib><creatorcontrib>CHUONG, C. J</creatorcontrib><creatorcontrib>PREMINGER, G. M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHONG, P</au><au>CHUONG, C. J</au><au>PREMINGER, G. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>1993-07</date><risdate>1993</risdate><volume>94</volume><issue>1</issue><spage>29</spage><epage>36</epage><pages>29-36</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>8354759</pmid><doi>10.1121/1.407088</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1993-07, Vol.94 (1), p.29-36
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_75901521
source MEDLINE; Acoustical Society of America (AIP)
subjects Acoustics
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fracture mechanics, fatigue and cracks
Fundamental areas of phenomenology (including applications)
Kidney Calculi - surgery
Kidney Diseases - surgery
Lithotripsy - methods
Models, Theoretical
Nonlinear acoustics
Nonlinear acoustics, macrosonics
Physical Phenomena
Physics
Solid mechanics
Structural and continuum mechanics
Urology
title Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20shock%20waves%20in%20elastic%20solids%20caused%20by%20cavitation%20microjet%20impact.%20II:%20Application%20in%20extracorporeal%20shock%20wave%20lithotripsy&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=ZHONG,%20P&rft.date=1993-07&rft.volume=94&rft.issue=1&rft.spage=29&rft.epage=36&rft.pages=29-36&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.407088&rft_dat=%3Cproquest_cross%3E75901521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75901521&rft_id=info:pmid/8354759&rfr_iscdi=true