Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy
To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation i...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 1993-07, Vol.94 (1), p.29-36 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 94 |
creator | ZHONG, P CHUONG, C. J PREMINGER, G. M |
description | To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience. |
doi_str_mv | 10.1121/1.407088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75901521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75901521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-18e4fcd4d3b9d7fd541cbcc19eeba3096bf48951c6c8a24d8a7b8eed54d8a1273</originalsourceid><addsrcrecordid>eNpNkMFO3DAQhq2qCBZaqS-A5ENVccliJ87G7g2hFlZCggM9R5OJU0ydderxUvYZeOkaZYU4eaz55h_Nx9gXKZZSlvJcLpVohNYf2ELWpSh0XaqPbCGEkIUyq9UROyZ6zN9aV-aQHeqqVk1tFuzlLoYJfkNyYcPDwOkh4B_-D54scbfh1gMlh5yCdz1xhC3Znne7XD25NE-NDmN4tIm7cQJMS75ef-cX0-QdzsBrznOKgCFOIVrw77Zw79JDSNFNtPvEDgbwZD_v3xP26-eP-8vr4ub2an15cVNgWZapkNqqAXvVV53pm6GvlcQOURprO6iEWXWD0qaWuEINpeo1NJ22NnO5lGVTnbBvc-4Uw9-tpdSOjtB6DxsbttRmMSJblBk8m8F8IFG0QztFN0LctVK0r95b2c7eM3q6z9x2o-3fwL3o3P-67wMh-CHCBh29YUqYujKi-g_JF40m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75901521</pqid></control><display><type>article</type><title>Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy</title><source>MEDLINE</source><source>Acoustical Society of America (AIP)</source><creator>ZHONG, P ; CHUONG, C. J ; PREMINGER, G. M</creator><creatorcontrib>ZHONG, P ; CHUONG, C. J ; PREMINGER, G. M</creatorcontrib><description>To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.407088</identifier><identifier>PMID: 8354759</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Kidney Calculi - surgery ; Kidney Diseases - surgery ; Lithotripsy - methods ; Models, Theoretical ; Nonlinear acoustics ; Nonlinear acoustics, macrosonics ; Physical Phenomena ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Urology</subject><ispartof>The Journal of the Acoustical Society of America, 1993-07, Vol.94 (1), p.29-36</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-18e4fcd4d3b9d7fd541cbcc19eeba3096bf48951c6c8a24d8a7b8eed54d8a1273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4095390$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8354759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ZHONG, P</creatorcontrib><creatorcontrib>CHUONG, C. J</creatorcontrib><creatorcontrib>PREMINGER, G. M</creatorcontrib><title>Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Kidney Calculi - surgery</subject><subject>Kidney Diseases - surgery</subject><subject>Lithotripsy - methods</subject><subject>Models, Theoretical</subject><subject>Nonlinear acoustics</subject><subject>Nonlinear acoustics, macrosonics</subject><subject>Physical Phenomena</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Urology</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMFO3DAQhq2qCBZaqS-A5ENVccliJ87G7g2hFlZCggM9R5OJU0ydderxUvYZeOkaZYU4eaz55h_Nx9gXKZZSlvJcLpVohNYf2ELWpSh0XaqPbCGEkIUyq9UROyZ6zN9aV-aQHeqqVk1tFuzlLoYJfkNyYcPDwOkh4B_-D54scbfh1gMlh5yCdz1xhC3Znne7XD25NE-NDmN4tIm7cQJMS75ef-cX0-QdzsBrznOKgCFOIVrw77Zw79JDSNFNtPvEDgbwZD_v3xP26-eP-8vr4ub2an15cVNgWZapkNqqAXvVV53pm6GvlcQOURprO6iEWXWD0qaWuEINpeo1NJ22NnO5lGVTnbBvc-4Uw9-tpdSOjtB6DxsbttRmMSJblBk8m8F8IFG0QztFN0LctVK0r95b2c7eM3q6z9x2o-3fwL3o3P-67wMh-CHCBh29YUqYujKi-g_JF40m</recordid><startdate>199307</startdate><enddate>199307</enddate><creator>ZHONG, P</creator><creator>CHUONG, C. J</creator><creator>PREMINGER, G. M</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>199307</creationdate><title>Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy</title><author>ZHONG, P ; CHUONG, C. J ; PREMINGER, G. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-18e4fcd4d3b9d7fd541cbcc19eeba3096bf48951c6c8a24d8a7b8eed54d8a1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Kidney Calculi - surgery</topic><topic>Kidney Diseases - surgery</topic><topic>Lithotripsy - methods</topic><topic>Models, Theoretical</topic><topic>Nonlinear acoustics</topic><topic>Nonlinear acoustics, macrosonics</topic><topic>Physical Phenomena</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHONG, P</creatorcontrib><creatorcontrib>CHUONG, C. J</creatorcontrib><creatorcontrib>PREMINGER, G. M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHONG, P</au><au>CHUONG, C. J</au><au>PREMINGER, G. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>1993-07</date><risdate>1993</risdate><volume>94</volume><issue>1</issue><spage>29</spage><epage>36</epage><pages>29-36</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>8354759</pmid><doi>10.1121/1.407088</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 1993-07, Vol.94 (1), p.29-36 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_75901521 |
source | MEDLINE; Acoustical Society of America (AIP) |
subjects | Acoustics Exact sciences and technology Fracture mechanics (crack, fatigue, damage...) Fracture mechanics, fatigue and cracks Fundamental areas of phenomenology (including applications) Kidney Calculi - surgery Kidney Diseases - surgery Lithotripsy - methods Models, Theoretical Nonlinear acoustics Nonlinear acoustics, macrosonics Physical Phenomena Physics Solid mechanics Structural and continuum mechanics Urology |
title | Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20shock%20waves%20in%20elastic%20solids%20caused%20by%20cavitation%20microjet%20impact.%20II:%20Application%20in%20extracorporeal%20shock%20wave%20lithotripsy&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=ZHONG,%20P&rft.date=1993-07&rft.volume=94&rft.issue=1&rft.spage=29&rft.epage=36&rft.pages=29-36&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.407088&rft_dat=%3Cproquest_cross%3E75901521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75901521&rft_id=info:pmid/8354759&rfr_iscdi=true |