Apolipoprotein E modulates low density lipoprotein retention by lipoprotein lipase anchored to the subendothelial matrix

Lipoprotein lipase (lipase), a key enzyme in lipoprotein triglyceride metabolism, has been shown to markedly increase low density lipoprotein (LDL) retention by subendothelial matrix. In the present study we assessed the role that lipoprotein and matrix components play in retention of LDL by lipase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1993-07, Vol.268 (20), p.14812-14819
Hauptverfasser: Saxena, U, Ferguson, E, Bisgaier, C.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14819
container_issue 20
container_start_page 14812
container_title The Journal of biological chemistry
container_volume 268
creator Saxena, U
Ferguson, E
Bisgaier, C.L
description Lipoprotein lipase (lipase), a key enzyme in lipoprotein triglyceride metabolism, has been shown to markedly increase low density lipoprotein (LDL) retention by subendothelial matrix. In the present study we assessed the role that lipoprotein and matrix components play in retention of LDL by lipase anchored to the subendothelial matrix. Lipase addition to subendothelial matrix increased LDL retention by 66-fold. Scatchard analysis of LDL binding to lipase-containing matrix yielded an association constant of 12 nM. Exogenous addition of the matrix components, heparan sulfate and dermatan sulfate (i.e. chondroitin sulfate beta), reduced LDL retention by greater than 90%. These glycosaminoglycans (GAGS) also reduced lipolytic activity associated with the matrix, suggesting that lipase was released from its binding sites on the matrix. In contrast, other matrix components (collagen, fibronectin, vitronectin, and chondroitin sulfate A) neither affected LDL release nor matrix lipolytic activity. Thus, heparan sulfate and dermatan sulfate function to anchor lipase to the subendothelial cell matrix. The effects of apolipoprotein E (apoE) and apoA-I were also examined. Preincubation of the subendothelial matrix with apoE, followed by washing, did not affect subsequent lipase binding to the matrix nor its ability to retain LDL. However, the direct addition of apoE alone or in combination with phospholipid liposomes decreased lipase-mediated LDL retention in a concentration-dependent fashion. Addition of apoA-I had no effect. Thus, in these studies apoE functions to displace LDL bound to lipase, but not lipase anchored to the matrix. To further examine the physiologic implications of this process, we assessed the ability of human apoE-rich and apoE-poor high density lipoproteins (HDL) to displace LDL from matrix-anchored lipase. ApoE-rich HDL reduced LDL retention dramatically (86% at 2.5 microgram/ml)
doi_str_mv 10.1016/S0021-9258(18)82406-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75843884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75843884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-dc1e14a5aa8d46f815b02348b4882e538f12d29a1ea67d32e102e960aa7b5c033</originalsourceid><addsrcrecordid>eNpVkFFrFDEQgIMo9Tz9A0IhD1L0YTWTZHdzj6XUVij4UAu-hdnd2W5kd3MmWdr-e3O949RAyJD5ZjL5GDsF8RkEVF9uhZBQbGRpPoL5ZKQWVQEv2AqEUYUq4edLtjoir9mbGH-JvPQGTtiJUfmyEiv2eL71o9v6bfCJ3Mwv-eS7ZcREkY_-gXc0R5ee-L9MoERzcn7mzf-JHGMkjnM7-EAdT56ngXhcGpo7n8PR4cgnTME9vmWvehwjvTuca3b39fLHxXVx8_3q28X5TdFqaVLRtUCgsUQ0na56A2UjpNKm0cZIKpXpQXZyg0BY1Z2SBELSphKIdVO2Qqk1O9v3zUP-XigmO7nY0jjiTH6Jti6NVibvNSv3YBt8jIF6uw1uwvBkQdidcfts3O50WjD22biFXHd6eGBpJuqOVQfFOf_hkMfY4tiHrMfFI5b_IUDJv9jg7ocHF8g2zrcDTVZWxso8gjaww97vsR69xfuQO93dbrSqdV2pPyNkn5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75843884</pqid></control><display><type>article</type><title>Apolipoprotein E modulates low density lipoprotein retention by lipoprotein lipase anchored to the subendothelial matrix</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Saxena, U ; Ferguson, E ; Bisgaier, C.L</creator><creatorcontrib>Saxena, U ; Ferguson, E ; Bisgaier, C.L</creatorcontrib><description>Lipoprotein lipase (lipase), a key enzyme in lipoprotein triglyceride metabolism, has been shown to markedly increase low density lipoprotein (LDL) retention by subendothelial matrix. In the present study we assessed the role that lipoprotein and matrix components play in retention of LDL by lipase anchored to the subendothelial matrix. Lipase addition to subendothelial matrix increased LDL retention by 66-fold. Scatchard analysis of LDL binding to lipase-containing matrix yielded an association constant of 12 nM. Exogenous addition of the matrix components, heparan sulfate and dermatan sulfate (i.e. chondroitin sulfate beta), reduced LDL retention by greater than 90%. These glycosaminoglycans (GAGS) also reduced lipolytic activity associated with the matrix, suggesting that lipase was released from its binding sites on the matrix. In contrast, other matrix components (collagen, fibronectin, vitronectin, and chondroitin sulfate A) neither affected LDL release nor matrix lipolytic activity. Thus, heparan sulfate and dermatan sulfate function to anchor lipase to the subendothelial cell matrix. The effects of apolipoprotein E (apoE) and apoA-I were also examined. Preincubation of the subendothelial matrix with apoE, followed by washing, did not affect subsequent lipase binding to the matrix nor its ability to retain LDL. However, the direct addition of apoE alone or in combination with phospholipid liposomes decreased lipase-mediated LDL retention in a concentration-dependent fashion. Addition of apoA-I had no effect. Thus, in these studies apoE functions to displace LDL bound to lipase, but not lipase anchored to the matrix. To further examine the physiologic implications of this process, we assessed the ability of human apoE-rich and apoE-poor high density lipoproteins (HDL) to displace LDL from matrix-anchored lipase. ApoE-rich HDL reduced LDL retention dramatically (86% at 2.5 microgram/ml)</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)82406-1</identifier><identifier>PMID: 8325860</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Biochemistry and Molecular Biology</publisher><subject>Analytical, structural and metabolic biochemistry ; Animals ; Apolipoprotein A-I - physiology ; Apolipoproteins E - physiology ; ARTERIOSCLEROSE ; ARTERIOSCLEROSIS ; Biological and medical sciences ; Cattle ; Cells, Cultured ; Dermatan Sulfate - physiology ; Endothelium, Vascular - cytology ; Endothelium, Vascular - metabolism ; EPITELIO ; EPITHELIUM ; Fundamental and applied biological sciences. Psychology ; GENERO HUMANO ; GENRE HUMAIN ; GLICOSAMINOGLICANOS ; GLYCOSAMINOGLYCANE ; Heparitin Sulfate - physiology ; Humans ; Lipids - physiology ; Lipoprotein Lipase - metabolism ; LIPOPROTEINA LIPASA ; LIPOPROTEINAS ; LIPOPROTEINE ; LIPOPROTEINE LIPASE ; Lipoproteins, LDL - metabolism ; Lipoproteins, myelin ; MUCOPOLISACARIDOS ; MUCOPOLYSACCHARIDE ; PATHOGENESE ; PATOGENESIS ; Proteins ; Swine ; VAISSEAU SANGUIN ; VASOS SANGUINEOS</subject><ispartof>The Journal of biological chemistry, 1993-07, Vol.268 (20), p.14812-14819</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-dc1e14a5aa8d46f815b02348b4882e538f12d29a1ea67d32e102e960aa7b5c033</citedby><cites>FETCH-LOGICAL-c428t-dc1e14a5aa8d46f815b02348b4882e538f12d29a1ea67d32e102e960aa7b5c033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4880132$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8325860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saxena, U</creatorcontrib><creatorcontrib>Ferguson, E</creatorcontrib><creatorcontrib>Bisgaier, C.L</creatorcontrib><title>Apolipoprotein E modulates low density lipoprotein retention by lipoprotein lipase anchored to the subendothelial matrix</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Lipoprotein lipase (lipase), a key enzyme in lipoprotein triglyceride metabolism, has been shown to markedly increase low density lipoprotein (LDL) retention by subendothelial matrix. In the present study we assessed the role that lipoprotein and matrix components play in retention of LDL by lipase anchored to the subendothelial matrix. Lipase addition to subendothelial matrix increased LDL retention by 66-fold. Scatchard analysis of LDL binding to lipase-containing matrix yielded an association constant of 12 nM. Exogenous addition of the matrix components, heparan sulfate and dermatan sulfate (i.e. chondroitin sulfate beta), reduced LDL retention by greater than 90%. These glycosaminoglycans (GAGS) also reduced lipolytic activity associated with the matrix, suggesting that lipase was released from its binding sites on the matrix. In contrast, other matrix components (collagen, fibronectin, vitronectin, and chondroitin sulfate A) neither affected LDL release nor matrix lipolytic activity. Thus, heparan sulfate and dermatan sulfate function to anchor lipase to the subendothelial cell matrix. The effects of apolipoprotein E (apoE) and apoA-I were also examined. Preincubation of the subendothelial matrix with apoE, followed by washing, did not affect subsequent lipase binding to the matrix nor its ability to retain LDL. However, the direct addition of apoE alone or in combination with phospholipid liposomes decreased lipase-mediated LDL retention in a concentration-dependent fashion. Addition of apoA-I had no effect. Thus, in these studies apoE functions to displace LDL bound to lipase, but not lipase anchored to the matrix. To further examine the physiologic implications of this process, we assessed the ability of human apoE-rich and apoE-poor high density lipoproteins (HDL) to displace LDL from matrix-anchored lipase. ApoE-rich HDL reduced LDL retention dramatically (86% at 2.5 microgram/ml)</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Apolipoprotein A-I - physiology</subject><subject>Apolipoproteins E - physiology</subject><subject>ARTERIOSCLEROSE</subject><subject>ARTERIOSCLEROSIS</subject><subject>Biological and medical sciences</subject><subject>Cattle</subject><subject>Cells, Cultured</subject><subject>Dermatan Sulfate - physiology</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - metabolism</subject><subject>EPITELIO</subject><subject>EPITHELIUM</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENERO HUMANO</subject><subject>GENRE HUMAIN</subject><subject>GLICOSAMINOGLICANOS</subject><subject>GLYCOSAMINOGLYCANE</subject><subject>Heparitin Sulfate - physiology</subject><subject>Humans</subject><subject>Lipids - physiology</subject><subject>Lipoprotein Lipase - metabolism</subject><subject>LIPOPROTEINA LIPASA</subject><subject>LIPOPROTEINAS</subject><subject>LIPOPROTEINE</subject><subject>LIPOPROTEINE LIPASE</subject><subject>Lipoproteins, LDL - metabolism</subject><subject>Lipoproteins, myelin</subject><subject>MUCOPOLISACARIDOS</subject><subject>MUCOPOLYSACCHARIDE</subject><subject>PATHOGENESE</subject><subject>PATOGENESIS</subject><subject>Proteins</subject><subject>Swine</subject><subject>VAISSEAU SANGUIN</subject><subject>VASOS SANGUINEOS</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFFrFDEQgIMo9Tz9A0IhD1L0YTWTZHdzj6XUVij4UAu-hdnd2W5kd3MmWdr-e3O949RAyJD5ZjL5GDsF8RkEVF9uhZBQbGRpPoL5ZKQWVQEv2AqEUYUq4edLtjoir9mbGH-JvPQGTtiJUfmyEiv2eL71o9v6bfCJ3Mwv-eS7ZcREkY_-gXc0R5ee-L9MoERzcn7mzf-JHGMkjnM7-EAdT56ngXhcGpo7n8PR4cgnTME9vmWvehwjvTuca3b39fLHxXVx8_3q28X5TdFqaVLRtUCgsUQ0na56A2UjpNKm0cZIKpXpQXZyg0BY1Z2SBELSphKIdVO2Qqk1O9v3zUP-XigmO7nY0jjiTH6Jti6NVibvNSv3YBt8jIF6uw1uwvBkQdidcfts3O50WjD22biFXHd6eGBpJuqOVQfFOf_hkMfY4tiHrMfFI5b_IUDJv9jg7ocHF8g2zrcDTVZWxso8gjaww97vsR69xfuQO93dbrSqdV2pPyNkn5E</recordid><startdate>19930715</startdate><enddate>19930715</enddate><creator>Saxena, U</creator><creator>Ferguson, E</creator><creator>Bisgaier, C.L</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19930715</creationdate><title>Apolipoprotein E modulates low density lipoprotein retention by lipoprotein lipase anchored to the subendothelial matrix</title><author>Saxena, U ; Ferguson, E ; Bisgaier, C.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-dc1e14a5aa8d46f815b02348b4882e538f12d29a1ea67d32e102e960aa7b5c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Apolipoprotein A-I - physiology</topic><topic>Apolipoproteins E - physiology</topic><topic>ARTERIOSCLEROSE</topic><topic>ARTERIOSCLEROSIS</topic><topic>Biological and medical sciences</topic><topic>Cattle</topic><topic>Cells, Cultured</topic><topic>Dermatan Sulfate - physiology</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - metabolism</topic><topic>EPITELIO</topic><topic>EPITHELIUM</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENERO HUMANO</topic><topic>GENRE HUMAIN</topic><topic>GLICOSAMINOGLICANOS</topic><topic>GLYCOSAMINOGLYCANE</topic><topic>Heparitin Sulfate - physiology</topic><topic>Humans</topic><topic>Lipids - physiology</topic><topic>Lipoprotein Lipase - metabolism</topic><topic>LIPOPROTEINA LIPASA</topic><topic>LIPOPROTEINAS</topic><topic>LIPOPROTEINE</topic><topic>LIPOPROTEINE LIPASE</topic><topic>Lipoproteins, LDL - metabolism</topic><topic>Lipoproteins, myelin</topic><topic>MUCOPOLISACARIDOS</topic><topic>MUCOPOLYSACCHARIDE</topic><topic>PATHOGENESE</topic><topic>PATOGENESIS</topic><topic>Proteins</topic><topic>Swine</topic><topic>VAISSEAU SANGUIN</topic><topic>VASOS SANGUINEOS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saxena, U</creatorcontrib><creatorcontrib>Ferguson, E</creatorcontrib><creatorcontrib>Bisgaier, C.L</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saxena, U</au><au>Ferguson, E</au><au>Bisgaier, C.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apolipoprotein E modulates low density lipoprotein retention by lipoprotein lipase anchored to the subendothelial matrix</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1993-07-15</date><risdate>1993</risdate><volume>268</volume><issue>20</issue><spage>14812</spage><epage>14819</epage><pages>14812-14819</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>Lipoprotein lipase (lipase), a key enzyme in lipoprotein triglyceride metabolism, has been shown to markedly increase low density lipoprotein (LDL) retention by subendothelial matrix. In the present study we assessed the role that lipoprotein and matrix components play in retention of LDL by lipase anchored to the subendothelial matrix. Lipase addition to subendothelial matrix increased LDL retention by 66-fold. Scatchard analysis of LDL binding to lipase-containing matrix yielded an association constant of 12 nM. Exogenous addition of the matrix components, heparan sulfate and dermatan sulfate (i.e. chondroitin sulfate beta), reduced LDL retention by greater than 90%. These glycosaminoglycans (GAGS) also reduced lipolytic activity associated with the matrix, suggesting that lipase was released from its binding sites on the matrix. In contrast, other matrix components (collagen, fibronectin, vitronectin, and chondroitin sulfate A) neither affected LDL release nor matrix lipolytic activity. Thus, heparan sulfate and dermatan sulfate function to anchor lipase to the subendothelial cell matrix. The effects of apolipoprotein E (apoE) and apoA-I were also examined. Preincubation of the subendothelial matrix with apoE, followed by washing, did not affect subsequent lipase binding to the matrix nor its ability to retain LDL. However, the direct addition of apoE alone or in combination with phospholipid liposomes decreased lipase-mediated LDL retention in a concentration-dependent fashion. Addition of apoA-I had no effect. Thus, in these studies apoE functions to displace LDL bound to lipase, but not lipase anchored to the matrix. To further examine the physiologic implications of this process, we assessed the ability of human apoE-rich and apoE-poor high density lipoproteins (HDL) to displace LDL from matrix-anchored lipase. ApoE-rich HDL reduced LDL retention dramatically (86% at 2.5 microgram/ml)</abstract><cop>Bethesda, MD</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>8325860</pmid><doi>10.1016/S0021-9258(18)82406-1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1993-07, Vol.268 (20), p.14812-14819
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_75843884
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Analytical, structural and metabolic biochemistry
Animals
Apolipoprotein A-I - physiology
Apolipoproteins E - physiology
ARTERIOSCLEROSE
ARTERIOSCLEROSIS
Biological and medical sciences
Cattle
Cells, Cultured
Dermatan Sulfate - physiology
Endothelium, Vascular - cytology
Endothelium, Vascular - metabolism
EPITELIO
EPITHELIUM
Fundamental and applied biological sciences. Psychology
GENERO HUMANO
GENRE HUMAIN
GLICOSAMINOGLICANOS
GLYCOSAMINOGLYCANE
Heparitin Sulfate - physiology
Humans
Lipids - physiology
Lipoprotein Lipase - metabolism
LIPOPROTEINA LIPASA
LIPOPROTEINAS
LIPOPROTEINE
LIPOPROTEINE LIPASE
Lipoproteins, LDL - metabolism
Lipoproteins, myelin
MUCOPOLISACARIDOS
MUCOPOLYSACCHARIDE
PATHOGENESE
PATOGENESIS
Proteins
Swine
VAISSEAU SANGUIN
VASOS SANGUINEOS
title Apolipoprotein E modulates low density lipoprotein retention by lipoprotein lipase anchored to the subendothelial matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apolipoprotein%20E%20modulates%20low%20density%20lipoprotein%20retention%20by%20lipoprotein%20lipase%20anchored%20to%20the%20subendothelial%20matrix&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Saxena,%20U&rft.date=1993-07-15&rft.volume=268&rft.issue=20&rft.spage=14812&rft.epage=14819&rft.pages=14812-14819&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)82406-1&rft_dat=%3Cproquest_cross%3E75843884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75843884&rft_id=info:pmid/8325860&rfr_iscdi=true