Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo
AXONAL elongation and the transformation of growth cones to synaptic terminals are major steps of brain development and the molecular mechanisms involved form the basis of the correct wiring of the nervous system. The same mechanisms may also contribute to the remodelling of nerve terminals that occ...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1993-07, Vol.364 (6436), p.445-448 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | 6436 |
container_start_page | 445 |
container_title | Nature (London) |
container_volume | 364 |
creator | Osen-Sand, Astrid Catsicas, Marina Staple, Julie K Jones, Kenneth A Ayala, Guidon Knowles, Jonathan Grenningloh, Gabriele Catsicas, Stefan |
description | AXONAL elongation and the transformation of growth cones to synaptic terminals are major steps of brain development and the molecular mechanisms involved form the basis of the correct wiring of the nervous system. The same mechanisms may also contribute to the remodelling of nerve terminals that occurs in the adult brain, as a morphological substrate to memory and learning
1
. We have investigated the function of the nerve terminal protein SNAP-25 (ref. 2) during development. We report here that SNAP-25 is expressed in axonal growth cones during late stages of elongation and that selective inhibition of SNAP-25 expression prevents neurite elongation by rat cortical neurons and PC-12 cells
in vitro
and by amacrine cells of the developing chick retina
in vivo
. These results demonstrate that SNAP-25 plays a key role in axonal growth. They also suggest that high levels of SNAP-25 expression in specific areas of the adult brain
2
may contribute to nerve terminal plasticity. |
doi_str_mv | 10.1038/364445a0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75837523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75837523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-dbf7b72ad06f545691e8d1c3448ceafafee8c9f57f8e5d2a50685b053b5747db3</originalsourceid><addsrcrecordid>eNqF0V1rFDEUBuAgSl3Xgn_AEoqIXozNd7KXpVQtFBVsvR0ymZNtymzSJjP9-Pem7LoFkXoVwnl4E86L0BtKPlHCzQFXQghpyTM0o0KrRiijn6MZIcw0xHD1Er0q5ZIQIqkWO2jHcM4YlTP06yRehC6MIUWcPLZ3KdoBL3O6HS9wd49_fjv80TCJbRxDgVgApyEsU5zcAGkMPRQcIr4JY07V9OvLTXqNXng7FNjdnHN0_vn47Ohrc_r9y8nR4WnjJKNj03ded5rZnigvhVQLCqanjgthHFhvPYBxCy-1NyB7ZiVRRnZE8k5qofuOz9H7de5VTtcTlLFdheJgGGyENJVWS8O1ZPy_kKqFMoI8wA9Pw7pSUh-vdo72_6KXacp1f6VlpNahhZKPeS6nUjL49iqHlc33Nal96K79012lbzd5U7eCfgs3ZdX5u83cFmcHn210oWyZMJwobSr7uGalTuIS8uO3_vHk3tpGO04Ztllb8Bsyr7Xn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204457465</pqid></control><display><type>article</type><title>Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo</title><source>MEDLINE</source><source>Nature Journals</source><source>Alma/SFX Local Collection</source><creator>Osen-Sand, Astrid ; Catsicas, Marina ; Staple, Julie K ; Jones, Kenneth A ; Ayala, Guidon ; Knowles, Jonathan ; Grenningloh, Gabriele ; Catsicas, Stefan</creator><creatorcontrib>Osen-Sand, Astrid ; Catsicas, Marina ; Staple, Julie K ; Jones, Kenneth A ; Ayala, Guidon ; Knowles, Jonathan ; Grenningloh, Gabriele ; Catsicas, Stefan</creatorcontrib><description>AXONAL elongation and the transformation of growth cones to synaptic terminals are major steps of brain development and the molecular mechanisms involved form the basis of the correct wiring of the nervous system. The same mechanisms may also contribute to the remodelling of nerve terminals that occurs in the adult brain, as a morphological substrate to memory and learning
1
. We have investigated the function of the nerve terminal protein SNAP-25 (ref. 2) during development. We report here that SNAP-25 is expressed in axonal growth cones during late stages of elongation and that selective inhibition of SNAP-25 expression prevents neurite elongation by rat cortical neurons and PC-12 cells
in vitro
and by amacrine cells of the developing chick retina
in vivo
. These results demonstrate that SNAP-25 plays a key role in axonal growth. They also suggest that high levels of SNAP-25 expression in specific areas of the adult brain
2
may contribute to nerve terminal plasticity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/364445a0</identifier><identifier>PMID: 8332215</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Animals, Newborn ; Axons - physiology ; Base Sequence ; Biological and medical sciences ; Biology ; Brain ; Cells, Cultured ; Chick Embryo ; Fundamental and applied biological sciences. Psychology ; Humanities and Social Sciences ; Isolated neuron and nerve. Neuroglia ; letter ; Membrane Proteins ; Molecular Sequence Data ; multidisciplinary ; Nerve Growth Factors ; Nerve Tissue Proteins - biosynthesis ; Nerve Tissue Proteins - physiology ; Nervous system ; Neurites - physiology ; Neurons - metabolism ; Oligonucleotides, Antisense ; PC12 Cells ; Proteins ; Rats ; Retina - embryology ; Retina - metabolism ; Science ; Science (multidisciplinary) ; Synaptosomal-Associated Protein 25 ; Thionucleotides ; Vertebrates: nervous system and sense organs</subject><ispartof>Nature (London), 1993-07, Vol.364 (6436), p.445-448</ispartof><rights>Springer Nature Limited 1993</rights><rights>1993 INIST-CNRS</rights><rights>Copyright Macmillan Journals Ltd. Jul 29, 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-dbf7b72ad06f545691e8d1c3448ceafafee8c9f57f8e5d2a50685b053b5747db3</citedby><cites>FETCH-LOGICAL-c521t-dbf7b72ad06f545691e8d1c3448ceafafee8c9f57f8e5d2a50685b053b5747db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27926,27927</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4830678$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8332215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osen-Sand, Astrid</creatorcontrib><creatorcontrib>Catsicas, Marina</creatorcontrib><creatorcontrib>Staple, Julie K</creatorcontrib><creatorcontrib>Jones, Kenneth A</creatorcontrib><creatorcontrib>Ayala, Guidon</creatorcontrib><creatorcontrib>Knowles, Jonathan</creatorcontrib><creatorcontrib>Grenningloh, Gabriele</creatorcontrib><creatorcontrib>Catsicas, Stefan</creatorcontrib><title>Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>AXONAL elongation and the transformation of growth cones to synaptic terminals are major steps of brain development and the molecular mechanisms involved form the basis of the correct wiring of the nervous system. The same mechanisms may also contribute to the remodelling of nerve terminals that occurs in the adult brain, as a morphological substrate to memory and learning
1
. We have investigated the function of the nerve terminal protein SNAP-25 (ref. 2) during development. We report here that SNAP-25 is expressed in axonal growth cones during late stages of elongation and that selective inhibition of SNAP-25 expression prevents neurite elongation by rat cortical neurons and PC-12 cells
in vitro
and by amacrine cells of the developing chick retina
in vivo
. These results demonstrate that SNAP-25 plays a key role in axonal growth. They also suggest that high levels of SNAP-25 expression in specific areas of the adult brain
2
may contribute to nerve terminal plasticity.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Axons - physiology</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biology</subject><subject>Brain</subject><subject>Cells, Cultured</subject><subject>Chick Embryo</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humanities and Social Sciences</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>letter</subject><subject>Membrane Proteins</subject><subject>Molecular Sequence Data</subject><subject>multidisciplinary</subject><subject>Nerve Growth Factors</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Nervous system</subject><subject>Neurites - physiology</subject><subject>Neurons - metabolism</subject><subject>Oligonucleotides, Antisense</subject><subject>PC12 Cells</subject><subject>Proteins</subject><subject>Rats</subject><subject>Retina - embryology</subject><subject>Retina - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synaptosomal-Associated Protein 25</subject><subject>Thionucleotides</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0V1rFDEUBuAgSl3Xgn_AEoqIXozNd7KXpVQtFBVsvR0ymZNtymzSJjP9-Pem7LoFkXoVwnl4E86L0BtKPlHCzQFXQghpyTM0o0KrRiijn6MZIcw0xHD1Er0q5ZIQIqkWO2jHcM4YlTP06yRehC6MIUWcPLZ3KdoBL3O6HS9wd49_fjv80TCJbRxDgVgApyEsU5zcAGkMPRQcIr4JY07V9OvLTXqNXng7FNjdnHN0_vn47Ohrc_r9y8nR4WnjJKNj03ded5rZnigvhVQLCqanjgthHFhvPYBxCy-1NyB7ZiVRRnZE8k5qofuOz9H7de5VTtcTlLFdheJgGGyENJVWS8O1ZPy_kKqFMoI8wA9Pw7pSUh-vdo72_6KXacp1f6VlpNahhZKPeS6nUjL49iqHlc33Nal96K79012lbzd5U7eCfgs3ZdX5u83cFmcHn210oWyZMJwobSr7uGalTuIS8uO3_vHk3tpGO04Ztllb8Bsyr7Xn</recordid><startdate>19930729</startdate><enddate>19930729</enddate><creator>Osen-Sand, Astrid</creator><creator>Catsicas, Marina</creator><creator>Staple, Julie K</creator><creator>Jones, Kenneth A</creator><creator>Ayala, Guidon</creator><creator>Knowles, Jonathan</creator><creator>Grenningloh, Gabriele</creator><creator>Catsicas, Stefan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>19930729</creationdate><title>Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo</title><author>Osen-Sand, Astrid ; Catsicas, Marina ; Staple, Julie K ; Jones, Kenneth A ; Ayala, Guidon ; Knowles, Jonathan ; Grenningloh, Gabriele ; Catsicas, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-dbf7b72ad06f545691e8d1c3448ceafafee8c9f57f8e5d2a50685b053b5747db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Axons - physiology</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biology</topic><topic>Brain</topic><topic>Cells, Cultured</topic><topic>Chick Embryo</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humanities and Social Sciences</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>letter</topic><topic>Membrane Proteins</topic><topic>Molecular Sequence Data</topic><topic>multidisciplinary</topic><topic>Nerve Growth Factors</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Nervous system</topic><topic>Neurites - physiology</topic><topic>Neurons - metabolism</topic><topic>Oligonucleotides, Antisense</topic><topic>PC12 Cells</topic><topic>Proteins</topic><topic>Rats</topic><topic>Retina - embryology</topic><topic>Retina - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synaptosomal-Associated Protein 25</topic><topic>Thionucleotides</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osen-Sand, Astrid</creatorcontrib><creatorcontrib>Catsicas, Marina</creatorcontrib><creatorcontrib>Staple, Julie K</creatorcontrib><creatorcontrib>Jones, Kenneth A</creatorcontrib><creatorcontrib>Ayala, Guidon</creatorcontrib><creatorcontrib>Knowles, Jonathan</creatorcontrib><creatorcontrib>Grenningloh, Gabriele</creatorcontrib><creatorcontrib>Catsicas, Stefan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osen-Sand, Astrid</au><au>Catsicas, Marina</au><au>Staple, Julie K</au><au>Jones, Kenneth A</au><au>Ayala, Guidon</au><au>Knowles, Jonathan</au><au>Grenningloh, Gabriele</au><au>Catsicas, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>1993-07-29</date><risdate>1993</risdate><volume>364</volume><issue>6436</issue><spage>445</spage><epage>448</epage><pages>445-448</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>AXONAL elongation and the transformation of growth cones to synaptic terminals are major steps of brain development and the molecular mechanisms involved form the basis of the correct wiring of the nervous system. The same mechanisms may also contribute to the remodelling of nerve terminals that occurs in the adult brain, as a morphological substrate to memory and learning
1
. We have investigated the function of the nerve terminal protein SNAP-25 (ref. 2) during development. We report here that SNAP-25 is expressed in axonal growth cones during late stages of elongation and that selective inhibition of SNAP-25 expression prevents neurite elongation by rat cortical neurons and PC-12 cells
in vitro
and by amacrine cells of the developing chick retina
in vivo
. These results demonstrate that SNAP-25 plays a key role in axonal growth. They also suggest that high levels of SNAP-25 expression in specific areas of the adult brain
2
may contribute to nerve terminal plasticity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>8332215</pmid><doi>10.1038/364445a0</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1993-07, Vol.364 (6436), p.445-448 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_75837523 |
source | MEDLINE; Nature Journals; Alma/SFX Local Collection |
subjects | Animals Animals, Newborn Axons - physiology Base Sequence Biological and medical sciences Biology Brain Cells, Cultured Chick Embryo Fundamental and applied biological sciences. Psychology Humanities and Social Sciences Isolated neuron and nerve. Neuroglia letter Membrane Proteins Molecular Sequence Data multidisciplinary Nerve Growth Factors Nerve Tissue Proteins - biosynthesis Nerve Tissue Proteins - physiology Nervous system Neurites - physiology Neurons - metabolism Oligonucleotides, Antisense PC12 Cells Proteins Rats Retina - embryology Retina - metabolism Science Science (multidisciplinary) Synaptosomal-Associated Protein 25 Thionucleotides Vertebrates: nervous system and sense organs |
title | Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20axonal%20growth%20by%20SNAP-25%20antisense%20oligonucleotides%20in%20vitro%20and%20in%20vivo&rft.jtitle=Nature%20(London)&rft.au=Osen-Sand,%20Astrid&rft.date=1993-07-29&rft.volume=364&rft.issue=6436&rft.spage=445&rft.epage=448&rft.pages=445-448&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/364445a0&rft_dat=%3Cproquest_cross%3E75837523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204457465&rft_id=info:pmid/8332215&rfr_iscdi=true |