Microbially influenced corrosion of galvanized steel pipes in aerobic water systems

To investigate the role of heterotrophic bacteria in the corrosion of galvanized steel in the presence of water. Samples were taken from corroding galvanized steel pipes conveying water for specialist applications, and heterotrophic bacteria were isolated and cultured. The majority of bacteria were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2010-07, Vol.109 (1), p.239-247
Hauptverfasser: Bolton, N, Critchley, M, Fabien, R, Cromar, N, Fallowfield, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 1
container_start_page 239
container_title Journal of applied microbiology
container_volume 109
creator Bolton, N
Critchley, M
Fabien, R
Cromar, N
Fallowfield, H
description To investigate the role of heterotrophic bacteria in the corrosion of galvanized steel in the presence of water. Samples were taken from corroding galvanized steel pipes conveying water for specialist applications, and heterotrophic bacteria were isolated and cultured. The majority of bacteria were Gram-negative aerobes and included Pseudomonas sp., Bacillus pumilus, Afipia spp. and Blastobacter denitrificans/Bradyrhizobium japonicum. Zinc tolerance was assessed through growth and zinc disc diffusion experiments. In general, zinc negatively influenced growth rates. An unidentified yeast also isolated from the system demonstrated a high tolerance to zinc at concentrations up to 4 g l⁻¹. Coupon experiments were performed to assess corrosion by the bacteria on galvanized steel and steel coupons. The majority of isolates as pure culture biofilms (69%) accelerated corrosion of galvanized coupons, assessed as zinc release, relative to sterile control coupons (P < 0·05). Pure culture biofilms did not increase the corrosion of steel, with four isolates demonstrating protective effects. Pure culture biofilms of heterotrophic bacteria isolated from a corroding galvanized pipe system were found to accelerate the corrosion of galvanized steel coupons. Microbially influenced corrosion is a potential contributor to sporadically occurring failures in galvanized steel systems containing water. Management strategies should consider microbial control as a means for corrosion prevention in these systems.
doi_str_mv 10.1111/j.1365-2672.2009.04650.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_758135046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>758135046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4820-211a3926371bbf17b377cf0a929333488ad27000a1cec7dd519cba0289ae40af3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EoqXwF8ASQpwS_Bk7Bw5VxadacSg9WxPHrrzyxou9abv8epzuUiQu4ItHnuedsec1QpiSltb1btVS3smGdYq1jJC-JaKTpL17hI4fEo_vY9FIotgRelbKihDKieyeoqOqUUQIfowuL4LNaQgQ4w6HycfZTdaN2KacUwlpwsnja4g3MIWf9bxsnYt4EzauVByDW8QW38LWZVx2Nb0uz9ETD7G4F4f9BF19_PD97HNz_u3Tl7PT88YKzUjDKAXes44rOgyeqoErZT2BnvWcc6E1jEwRQoBaZ9U4StrbAQjTPThBwPMT9HZfd5PTj9mVrVmHYl2MMLk0F6OkplzW0fybFKJjUitaydd_kas056k-wzDJmRRcUl4pvafq7ErJzptNDmvIO0OJWRwyK7MYYRYjzOKQuXfI3FXpy0ODeVi78UH425IKvDkAUCxEn2GyofzhmNaiZ6xy7_fcbYhu998XMF9PL5ao6l_t9R6Sgetce1xdsuWLUC15VfBfb-KzxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532543513</pqid></control><display><type>article</type><title>Microbially influenced corrosion of galvanized steel pipes in aerobic water systems</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Bolton, N ; Critchley, M ; Fabien, R ; Cromar, N ; Fallowfield, H</creator><creatorcontrib>Bolton, N ; Critchley, M ; Fabien, R ; Cromar, N ; Fallowfield, H</creatorcontrib><description>To investigate the role of heterotrophic bacteria in the corrosion of galvanized steel in the presence of water. Samples were taken from corroding galvanized steel pipes conveying water for specialist applications, and heterotrophic bacteria were isolated and cultured. The majority of bacteria were Gram-negative aerobes and included Pseudomonas sp., Bacillus pumilus, Afipia spp. and Blastobacter denitrificans/Bradyrhizobium japonicum. Zinc tolerance was assessed through growth and zinc disc diffusion experiments. In general, zinc negatively influenced growth rates. An unidentified yeast also isolated from the system demonstrated a high tolerance to zinc at concentrations up to 4 g l⁻¹. Coupon experiments were performed to assess corrosion by the bacteria on galvanized steel and steel coupons. The majority of isolates as pure culture biofilms (69%) accelerated corrosion of galvanized coupons, assessed as zinc release, relative to sterile control coupons (P &lt; 0·05). Pure culture biofilms did not increase the corrosion of steel, with four isolates demonstrating protective effects. Pure culture biofilms of heterotrophic bacteria isolated from a corroding galvanized pipe system were found to accelerate the corrosion of galvanized steel coupons. Microbially influenced corrosion is a potential contributor to sporadically occurring failures in galvanized steel systems containing water. Management strategies should consider microbial control as a means for corrosion prevention in these systems.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/j.1365-2672.2009.04650.x</identifier><identifier>PMID: 20070443</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Aerobes ; Bacillus pumilus ; Bacteria ; Bacteria - genetics ; Bacteria - growth &amp; development ; Bacteria - isolation &amp; purification ; Bacterial corrosion ; Biofilms ; Biological and medical sciences ; Blastobacter ; Corrosion ; Corrosion effects ; Corrosion potential ; Corrosion prevention ; Corrosion tests ; Diffusion rate ; Fundamental and applied biological sciences. Psychology ; Galvanized steel ; galvanized steel pipe ; Galvanized steels ; Galvanizing ; Growth rate ; Heterotrophic bacteria ; Heterotrophic Processes ; microbially influenced corrosion ; Microbiology ; Pipes ; Pollution tolerance ; Pseudomonas ; Pure culture ; RNA, Ribosomal, 16S - genetics ; Steel ; Steel - chemistry ; Steel pipes ; Water management ; Water Microbiology ; Water Supply ; Yeasts ; Zinc ; Zinc - chemistry</subject><ispartof>Journal of applied microbiology, 2010-07, Vol.109 (1), p.239-247</ispartof><rights>2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology</rights><rights>2015 INIST-CNRS</rights><rights>2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4820-211a3926371bbf17b377cf0a929333488ad27000a1cec7dd519cba0289ae40af3</citedby><cites>FETCH-LOGICAL-c4820-211a3926371bbf17b377cf0a929333488ad27000a1cec7dd519cba0289ae40af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2672.2009.04650.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2672.2009.04650.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22884922$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20070443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bolton, N</creatorcontrib><creatorcontrib>Critchley, M</creatorcontrib><creatorcontrib>Fabien, R</creatorcontrib><creatorcontrib>Cromar, N</creatorcontrib><creatorcontrib>Fallowfield, H</creatorcontrib><title>Microbially influenced corrosion of galvanized steel pipes in aerobic water systems</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>To investigate the role of heterotrophic bacteria in the corrosion of galvanized steel in the presence of water. Samples were taken from corroding galvanized steel pipes conveying water for specialist applications, and heterotrophic bacteria were isolated and cultured. The majority of bacteria were Gram-negative aerobes and included Pseudomonas sp., Bacillus pumilus, Afipia spp. and Blastobacter denitrificans/Bradyrhizobium japonicum. Zinc tolerance was assessed through growth and zinc disc diffusion experiments. In general, zinc negatively influenced growth rates. An unidentified yeast also isolated from the system demonstrated a high tolerance to zinc at concentrations up to 4 g l⁻¹. Coupon experiments were performed to assess corrosion by the bacteria on galvanized steel and steel coupons. The majority of isolates as pure culture biofilms (69%) accelerated corrosion of galvanized coupons, assessed as zinc release, relative to sterile control coupons (P &lt; 0·05). Pure culture biofilms did not increase the corrosion of steel, with four isolates demonstrating protective effects. Pure culture biofilms of heterotrophic bacteria isolated from a corroding galvanized pipe system were found to accelerate the corrosion of galvanized steel coupons. Microbially influenced corrosion is a potential contributor to sporadically occurring failures in galvanized steel systems containing water. Management strategies should consider microbial control as a means for corrosion prevention in these systems.</description><subject>Aerobes</subject><subject>Bacillus pumilus</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - growth &amp; development</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacterial corrosion</subject><subject>Biofilms</subject><subject>Biological and medical sciences</subject><subject>Blastobacter</subject><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion potential</subject><subject>Corrosion prevention</subject><subject>Corrosion tests</subject><subject>Diffusion rate</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galvanized steel</subject><subject>galvanized steel pipe</subject><subject>Galvanized steels</subject><subject>Galvanizing</subject><subject>Growth rate</subject><subject>Heterotrophic bacteria</subject><subject>Heterotrophic Processes</subject><subject>microbially influenced corrosion</subject><subject>Microbiology</subject><subject>Pipes</subject><subject>Pollution tolerance</subject><subject>Pseudomonas</subject><subject>Pure culture</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Steel</subject><subject>Steel - chemistry</subject><subject>Steel pipes</subject><subject>Water management</subject><subject>Water Microbiology</subject><subject>Water Supply</subject><subject>Yeasts</subject><subject>Zinc</subject><subject>Zinc - chemistry</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EoqXwF8ASQpwS_Bk7Bw5VxadacSg9WxPHrrzyxou9abv8epzuUiQu4ItHnuedsec1QpiSltb1btVS3smGdYq1jJC-JaKTpL17hI4fEo_vY9FIotgRelbKihDKieyeoqOqUUQIfowuL4LNaQgQ4w6HycfZTdaN2KacUwlpwsnja4g3MIWf9bxsnYt4EzauVByDW8QW38LWZVx2Nb0uz9ETD7G4F4f9BF19_PD97HNz_u3Tl7PT88YKzUjDKAXes44rOgyeqoErZT2BnvWcc6E1jEwRQoBaZ9U4StrbAQjTPThBwPMT9HZfd5PTj9mVrVmHYl2MMLk0F6OkplzW0fybFKJjUitaydd_kas056k-wzDJmRRcUl4pvafq7ErJzptNDmvIO0OJWRwyK7MYYRYjzOKQuXfI3FXpy0ODeVi78UH425IKvDkAUCxEn2GyofzhmNaiZ6xy7_fcbYhu998XMF9PL5ao6l_t9R6Sgetce1xdsuWLUC15VfBfb-KzxQ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Bolton, N</creator><creator>Critchley, M</creator><creator>Fabien, R</creator><creator>Cromar, N</creator><creator>Fallowfield, H</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201007</creationdate><title>Microbially influenced corrosion of galvanized steel pipes in aerobic water systems</title><author>Bolton, N ; Critchley, M ; Fabien, R ; Cromar, N ; Fallowfield, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4820-211a3926371bbf17b377cf0a929333488ad27000a1cec7dd519cba0289ae40af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerobes</topic><topic>Bacillus pumilus</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - growth &amp; development</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacterial corrosion</topic><topic>Biofilms</topic><topic>Biological and medical sciences</topic><topic>Blastobacter</topic><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion potential</topic><topic>Corrosion prevention</topic><topic>Corrosion tests</topic><topic>Diffusion rate</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galvanized steel</topic><topic>galvanized steel pipe</topic><topic>Galvanized steels</topic><topic>Galvanizing</topic><topic>Growth rate</topic><topic>Heterotrophic bacteria</topic><topic>Heterotrophic Processes</topic><topic>microbially influenced corrosion</topic><topic>Microbiology</topic><topic>Pipes</topic><topic>Pollution tolerance</topic><topic>Pseudomonas</topic><topic>Pure culture</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Steel</topic><topic>Steel - chemistry</topic><topic>Steel pipes</topic><topic>Water management</topic><topic>Water Microbiology</topic><topic>Water Supply</topic><topic>Yeasts</topic><topic>Zinc</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolton, N</creatorcontrib><creatorcontrib>Critchley, M</creatorcontrib><creatorcontrib>Fabien, R</creatorcontrib><creatorcontrib>Cromar, N</creatorcontrib><creatorcontrib>Fallowfield, H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolton, N</au><au>Critchley, M</au><au>Fabien, R</au><au>Cromar, N</au><au>Fallowfield, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbially influenced corrosion of galvanized steel pipes in aerobic water systems</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2010-07</date><risdate>2010</risdate><volume>109</volume><issue>1</issue><spage>239</spage><epage>247</epage><pages>239-247</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>To investigate the role of heterotrophic bacteria in the corrosion of galvanized steel in the presence of water. Samples were taken from corroding galvanized steel pipes conveying water for specialist applications, and heterotrophic bacteria were isolated and cultured. The majority of bacteria were Gram-negative aerobes and included Pseudomonas sp., Bacillus pumilus, Afipia spp. and Blastobacter denitrificans/Bradyrhizobium japonicum. Zinc tolerance was assessed through growth and zinc disc diffusion experiments. In general, zinc negatively influenced growth rates. An unidentified yeast also isolated from the system demonstrated a high tolerance to zinc at concentrations up to 4 g l⁻¹. Coupon experiments were performed to assess corrosion by the bacteria on galvanized steel and steel coupons. The majority of isolates as pure culture biofilms (69%) accelerated corrosion of galvanized coupons, assessed as zinc release, relative to sterile control coupons (P &lt; 0·05). Pure culture biofilms did not increase the corrosion of steel, with four isolates demonstrating protective effects. Pure culture biofilms of heterotrophic bacteria isolated from a corroding galvanized pipe system were found to accelerate the corrosion of galvanized steel coupons. Microbially influenced corrosion is a potential contributor to sporadically occurring failures in galvanized steel systems containing water. Management strategies should consider microbial control as a means for corrosion prevention in these systems.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20070443</pmid><doi>10.1111/j.1365-2672.2009.04650.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2010-07, Vol.109 (1), p.239-247
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_miscellaneous_758135046
source Oxford University Press Journals All Titles (1996-Current); Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Aerobes
Bacillus pumilus
Bacteria
Bacteria - genetics
Bacteria - growth & development
Bacteria - isolation & purification
Bacterial corrosion
Biofilms
Biological and medical sciences
Blastobacter
Corrosion
Corrosion effects
Corrosion potential
Corrosion prevention
Corrosion tests
Diffusion rate
Fundamental and applied biological sciences. Psychology
Galvanized steel
galvanized steel pipe
Galvanized steels
Galvanizing
Growth rate
Heterotrophic bacteria
Heterotrophic Processes
microbially influenced corrosion
Microbiology
Pipes
Pollution tolerance
Pseudomonas
Pure culture
RNA, Ribosomal, 16S - genetics
Steel
Steel - chemistry
Steel pipes
Water management
Water Microbiology
Water Supply
Yeasts
Zinc
Zinc - chemistry
title Microbially influenced corrosion of galvanized steel pipes in aerobic water systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbially%20influenced%20corrosion%20of%20galvanized%20steel%20pipes%20in%20aerobic%20water%20systems&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Bolton,%20N&rft.date=2010-07&rft.volume=109&rft.issue=1&rft.spage=239&rft.epage=247&rft.pages=239-247&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/j.1365-2672.2009.04650.x&rft_dat=%3Cproquest_cross%3E758135046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532543513&rft_id=info:pmid/20070443&rfr_iscdi=true