The impact of non-normality, sample size and estimation technique on goodness-of-fit measures in structural equation modeling: evidence from ten empirical models of travel behavior

Ten empirical models of travel behavior are used to measure the variability of structural equation model goodness-of-fit as a function of sample size, multivariate kurtosis, and estimation technique. The estimation techniques are maximum likelihood, asymptotic distribution free, bootstrapping, and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality & quantity 2010-04, Vol.44 (3), p.427-445
Hauptverfasser: Ory, David T., Mokhtarian, Patricia L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue 3
container_start_page 427
container_title Quality & quantity
container_volume 44
creator Ory, David T.
Mokhtarian, Patricia L.
description Ten empirical models of travel behavior are used to measure the variability of structural equation model goodness-of-fit as a function of sample size, multivariate kurtosis, and estimation technique. The estimation techniques are maximum likelihood, asymptotic distribution free, bootstrapping, and the M plus approach. The results highlight the divergence of these techniques when sample sizes are small and/or multivariate kurtosis high. Recommendations include using multiple estimation techniques and, when sample sizes are large, sampling the data and reestimating the models to test both the robustness of the specifications and to quantify, to some extent, the large sample bias inherent in the χ 2 test statistic.
doi_str_mv 10.1007/s11135-008-9215-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_758120965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>758120965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-a9ba3977fda9ca141e5e2331d685679154419c4f9195c3753fff9d7f8ce4a5f43</originalsourceid><addsrcrecordid>eNqNkcGKFDEURYMo2LZ-gLvgxo0Zk0pSqbiTYXSEATfjOmRSL90ZqpKaJNUwfpcfaNoSBEFw9Qicc8l7F6HXjF4wStX7whjjklA6EN0xSfonaMek4kQNQj5FO0o5J5Ip9Ry9KOWe0mYJtUM_bo-Aw7xYV3HyOKZIYsqznUJ9fIeLnZcJcAnfAds4Yig1zLaGFHEFd4zhYQXcHoeUxgilkOSJDxXPYMuaoeAQcal5dXXNdsLwsG7ynEaYQjx8wHAKI0QH2Oc0t9CIYV5CDq7hv6hy_lbN9gQTvoOjPYWUX6Jn3k4FXv2ee_Tt09Xt5TW5-fr5y-XHG-K40pVYfWe5VsqPVjvLBAMJHeds7AfZK82kEEw74TXTshmSe-_1qPzgQFjpBd-jt1vuklPbtFQzh-JgmmyEtBaj5MA6qnv5HyQfOiEFb-Sbv8j7tObY1jAd5X0_dG3sEdsgl1MpGbxZcjt8fjSMmnPfZuvbtL7NuW_TN6fbnNLYeID8J_jf0k_wgbEy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203668220</pqid></control><display><type>article</type><title>The impact of non-normality, sample size and estimation technique on goodness-of-fit measures in structural equation modeling: evidence from ten empirical models of travel behavior</title><source>Sociological Abstracts</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ory, David T. ; Mokhtarian, Patricia L.</creator><creatorcontrib>Ory, David T. ; Mokhtarian, Patricia L.</creatorcontrib><description>Ten empirical models of travel behavior are used to measure the variability of structural equation model goodness-of-fit as a function of sample size, multivariate kurtosis, and estimation technique. The estimation techniques are maximum likelihood, asymptotic distribution free, bootstrapping, and the M plus approach. The results highlight the divergence of these techniques when sample sizes are small and/or multivariate kurtosis high. Recommendations include using multiple estimation techniques and, when sample sizes are large, sampling the data and reestimating the models to test both the robustness of the specifications and to quantify, to some extent, the large sample bias inherent in the χ 2 test statistic.</description><identifier>ISSN: 0033-5177</identifier><identifier>EISSN: 1573-7845</identifier><identifier>DOI: 10.1007/s11135-008-9215-6</identifier><identifier>CODEN: QQEJAV</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bias ; Central business districts ; Datasets ; Discriminant analysis ; Estimation ; Kurtosis ; Measurement ; Methodology ; Methodology of the Social Sciences ; Neighborhoods ; Personality ; Research methods ; Samples ; Sampling ; Simulation ; Social Sciences ; Structural equation modeling ; Structural Models ; Transport ; Travel</subject><ispartof>Quality &amp; quantity, 2010-04, Vol.44 (3), p.427-445</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-a9ba3977fda9ca141e5e2331d685679154419c4f9195c3753fff9d7f8ce4a5f43</citedby><cites>FETCH-LOGICAL-c379t-a9ba3977fda9ca141e5e2331d685679154419c4f9195c3753fff9d7f8ce4a5f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11135-008-9215-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11135-008-9215-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27335,27915,27916,33765,33766,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Ory, David T.</creatorcontrib><creatorcontrib>Mokhtarian, Patricia L.</creatorcontrib><title>The impact of non-normality, sample size and estimation technique on goodness-of-fit measures in structural equation modeling: evidence from ten empirical models of travel behavior</title><title>Quality &amp; quantity</title><addtitle>Qual Quant</addtitle><description>Ten empirical models of travel behavior are used to measure the variability of structural equation model goodness-of-fit as a function of sample size, multivariate kurtosis, and estimation technique. The estimation techniques are maximum likelihood, asymptotic distribution free, bootstrapping, and the M plus approach. The results highlight the divergence of these techniques when sample sizes are small and/or multivariate kurtosis high. Recommendations include using multiple estimation techniques and, when sample sizes are large, sampling the data and reestimating the models to test both the robustness of the specifications and to quantify, to some extent, the large sample bias inherent in the χ 2 test statistic.</description><subject>Bias</subject><subject>Central business districts</subject><subject>Datasets</subject><subject>Discriminant analysis</subject><subject>Estimation</subject><subject>Kurtosis</subject><subject>Measurement</subject><subject>Methodology</subject><subject>Methodology of the Social Sciences</subject><subject>Neighborhoods</subject><subject>Personality</subject><subject>Research methods</subject><subject>Samples</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Structural equation modeling</subject><subject>Structural Models</subject><subject>Transport</subject><subject>Travel</subject><issn>0033-5177</issn><issn>1573-7845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkcGKFDEURYMo2LZ-gLvgxo0Zk0pSqbiTYXSEATfjOmRSL90ZqpKaJNUwfpcfaNoSBEFw9Qicc8l7F6HXjF4wStX7whjjklA6EN0xSfonaMek4kQNQj5FO0o5J5Ip9Ry9KOWe0mYJtUM_bo-Aw7xYV3HyOKZIYsqznUJ9fIeLnZcJcAnfAds4Yig1zLaGFHEFd4zhYQXcHoeUxgilkOSJDxXPYMuaoeAQcal5dXXNdsLwsG7ynEaYQjx8wHAKI0QH2Oc0t9CIYV5CDq7hv6hy_lbN9gQTvoOjPYWUX6Jn3k4FXv2ee_Tt09Xt5TW5-fr5y-XHG-K40pVYfWe5VsqPVjvLBAMJHeds7AfZK82kEEw74TXTshmSe-_1qPzgQFjpBd-jt1vuklPbtFQzh-JgmmyEtBaj5MA6qnv5HyQfOiEFb-Sbv8j7tObY1jAd5X0_dG3sEdsgl1MpGbxZcjt8fjSMmnPfZuvbtL7NuW_TN6fbnNLYeID8J_jf0k_wgbEy</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Ory, David T.</creator><creator>Mokhtarian, Patricia L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2M</scope><scope>M2O</scope><scope>M2R</scope><scope>M2S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>WZK</scope></search><sort><creationdate>20100401</creationdate><title>The impact of non-normality, sample size and estimation technique on goodness-of-fit measures in structural equation modeling: evidence from ten empirical models of travel behavior</title><author>Ory, David T. ; Mokhtarian, Patricia L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-a9ba3977fda9ca141e5e2331d685679154419c4f9195c3753fff9d7f8ce4a5f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bias</topic><topic>Central business districts</topic><topic>Datasets</topic><topic>Discriminant analysis</topic><topic>Estimation</topic><topic>Kurtosis</topic><topic>Measurement</topic><topic>Methodology</topic><topic>Methodology of the Social Sciences</topic><topic>Neighborhoods</topic><topic>Personality</topic><topic>Research methods</topic><topic>Samples</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Structural equation modeling</topic><topic>Structural Models</topic><topic>Transport</topic><topic>Travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ory, David T.</creatorcontrib><creatorcontrib>Mokhtarian, Patricia L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Quality &amp; quantity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ory, David T.</au><au>Mokhtarian, Patricia L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of non-normality, sample size and estimation technique on goodness-of-fit measures in structural equation modeling: evidence from ten empirical models of travel behavior</atitle><jtitle>Quality &amp; quantity</jtitle><stitle>Qual Quant</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>44</volume><issue>3</issue><spage>427</spage><epage>445</epage><pages>427-445</pages><issn>0033-5177</issn><eissn>1573-7845</eissn><coden>QQEJAV</coden><abstract>Ten empirical models of travel behavior are used to measure the variability of structural equation model goodness-of-fit as a function of sample size, multivariate kurtosis, and estimation technique. The estimation techniques are maximum likelihood, asymptotic distribution free, bootstrapping, and the M plus approach. The results highlight the divergence of these techniques when sample sizes are small and/or multivariate kurtosis high. Recommendations include using multiple estimation techniques and, when sample sizes are large, sampling the data and reestimating the models to test both the robustness of the specifications and to quantify, to some extent, the large sample bias inherent in the χ 2 test statistic.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11135-008-9215-6</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-5177
ispartof Quality & quantity, 2010-04, Vol.44 (3), p.427-445
issn 0033-5177
1573-7845
language eng
recordid cdi_proquest_miscellaneous_758120965
source Sociological Abstracts; SpringerLink Journals - AutoHoldings
subjects Bias
Central business districts
Datasets
Discriminant analysis
Estimation
Kurtosis
Measurement
Methodology
Methodology of the Social Sciences
Neighborhoods
Personality
Research methods
Samples
Sampling
Simulation
Social Sciences
Structural equation modeling
Structural Models
Transport
Travel
title The impact of non-normality, sample size and estimation technique on goodness-of-fit measures in structural equation modeling: evidence from ten empirical models of travel behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20non-normality,%20sample%20size%20and%20estimation%20technique%20on%20goodness-of-fit%20measures%20in%20structural%20equation%20modeling:%20evidence%20from%20ten%20empirical%20models%20of%20travel%20behavior&rft.jtitle=Quality%20&%20quantity&rft.au=Ory,%20David%20T.&rft.date=2010-04-01&rft.volume=44&rft.issue=3&rft.spage=427&rft.epage=445&rft.pages=427-445&rft.issn=0033-5177&rft.eissn=1573-7845&rft.coden=QQEJAV&rft_id=info:doi/10.1007/s11135-008-9215-6&rft_dat=%3Cproquest_cross%3E758120965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203668220&rft_id=info:pmid/&rfr_iscdi=true