Sequential monitoring of clinical trials: The role of information and brownian motion
Sequential monitoring has been a topic of major interest in clinical trials methodology over the past two decades. This paper presents a unified conceptual framework for sequential monitoring that covers a wide variety of monitoring procedures in a wide variety of clinical trial settings. The centra...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 1993-04, Vol.12 (8), p.753-765 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 765 |
---|---|
container_issue | 8 |
container_start_page | 753 |
container_title | Statistics in medicine |
container_volume | 12 |
creator | Lan, K. K. Gordon Zucker, David M. |
description | Sequential monitoring has been a topic of major interest in clinical trials methodology over the past two decades. This paper presents a unified conceptual framework for sequential monitoring that covers a wide variety of monitoring procedures in a wide variety of clinical trial settings. The central elements of this framework consist of a suitable concept of statistical information and a scheme for using this concept as a basis for summarizing the accumulating results of a trial in a standardized form, through a stochastic process that can be shown to approximate classical Brownian motion. The ideas are developed in a simple step‐by‐step fashion and illustrated by several practical examples. |
doi_str_mv | 10.1002/sim.4780120804 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75783595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75783595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4444-cc0789b964a4888e5b7f6244d9c3dfbb37b0be48367d0ff2688b734e65564bfe3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EglJY2ZAysaXYib_ChhCUSgGGtoLNihMbDIkNdirof4-rVCAmbjnp3ns_6R4AJwhOEITZeTDdBDMOUQY5xDtghGDBUpgRvgtGMGMspQyRA3AYwiuECJGM7YN9ThAlRTYCy7n6WCnbm6pNOmdN77yxz4nTSd0aa-p47n0Uw0WyeFGJd63aiMZq57uqN84mlW0S6d2nNZWNjM3tCOzpmFHH2z0Gy5vrxdVtWj5MZ1eXZVrjOGldQ8YLWVBcYc65IpJpmmHcFHXeaClzJqFUmOeUNVDrjHIuWY4VJYRiqVU-BmcD9927-EboRWdCrdq2ssqtgmCE8ZwUJBong7H2LgSvtHj3pqv8WiAoNj2K2KP47TEGTrfklexU82PfFhf1YtA_TavW_9DEfHb3h50OWRN69fWTrfyboCxnRDzeT8VjCe9u7p9KMc-_AXlbjvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75783595</pqid></control><display><type>article</type><title>Sequential monitoring of clinical trials: The role of information and brownian motion</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Lan, K. K. Gordon ; Zucker, David M.</creator><creatorcontrib>Lan, K. K. Gordon ; Zucker, David M.</creatorcontrib><description>Sequential monitoring has been a topic of major interest in clinical trials methodology over the past two decades. This paper presents a unified conceptual framework for sequential monitoring that covers a wide variety of monitoring procedures in a wide variety of clinical trial settings. The central elements of this framework consist of a suitable concept of statistical information and a scheme for using this concept as a basis for summarizing the accumulating results of a trial in a standardized form, through a stochastic process that can be shown to approximate classical Brownian motion. The ideas are developed in a simple step‐by‐step fashion and illustrated by several practical examples.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.4780120804</identifier><identifier>PMID: 8516592</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biophysical Phenomena ; Biophysics ; Clinical Protocols ; Clinical Trials as Topic ; Data Interpretation, Statistical ; Humans ; Likelihood Functions ; Linear Models ; Proportional Hazards Models ; Random Allocation ; Research Design ; Stochastic Processes ; Survival Rate ; Time Factors</subject><ispartof>Statistics in medicine, 1993-04, Vol.12 (8), p.753-765</ispartof><rights>Copyright © 1993 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4444-cc0789b964a4888e5b7f6244d9c3dfbb37b0be48367d0ff2688b734e65564bfe3</citedby><cites>FETCH-LOGICAL-c4444-cc0789b964a4888e5b7f6244d9c3dfbb37b0be48367d0ff2688b734e65564bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.4780120804$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.4780120804$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8516592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, K. K. Gordon</creatorcontrib><creatorcontrib>Zucker, David M.</creatorcontrib><title>Sequential monitoring of clinical trials: The role of information and brownian motion</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Sequential monitoring has been a topic of major interest in clinical trials methodology over the past two decades. This paper presents a unified conceptual framework for sequential monitoring that covers a wide variety of monitoring procedures in a wide variety of clinical trial settings. The central elements of this framework consist of a suitable concept of statistical information and a scheme for using this concept as a basis for summarizing the accumulating results of a trial in a standardized form, through a stochastic process that can be shown to approximate classical Brownian motion. The ideas are developed in a simple step‐by‐step fashion and illustrated by several practical examples.</description><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Clinical Protocols</subject><subject>Clinical Trials as Topic</subject><subject>Data Interpretation, Statistical</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Linear Models</subject><subject>Proportional Hazards Models</subject><subject>Random Allocation</subject><subject>Research Design</subject><subject>Stochastic Processes</subject><subject>Survival Rate</subject><subject>Time Factors</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1PwzAQxS0EglJY2ZAysaXYib_ChhCUSgGGtoLNihMbDIkNdirof4-rVCAmbjnp3ns_6R4AJwhOEITZeTDdBDMOUQY5xDtghGDBUpgRvgtGMGMspQyRA3AYwiuECJGM7YN9ThAlRTYCy7n6WCnbm6pNOmdN77yxz4nTSd0aa-p47n0Uw0WyeFGJd63aiMZq57uqN84mlW0S6d2nNZWNjM3tCOzpmFHH2z0Gy5vrxdVtWj5MZ1eXZVrjOGldQ8YLWVBcYc65IpJpmmHcFHXeaClzJqFUmOeUNVDrjHIuWY4VJYRiqVU-BmcD9927-EboRWdCrdq2ssqtgmCE8ZwUJBong7H2LgSvtHj3pqv8WiAoNj2K2KP47TEGTrfklexU82PfFhf1YtA_TavW_9DEfHb3h50OWRN69fWTrfyboCxnRDzeT8VjCe9u7p9KMc-_AXlbjvE</recordid><startdate>19930430</startdate><enddate>19930430</enddate><creator>Lan, K. K. Gordon</creator><creator>Zucker, David M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19930430</creationdate><title>Sequential monitoring of clinical trials: The role of information and brownian motion</title><author>Lan, K. K. Gordon ; Zucker, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4444-cc0789b964a4888e5b7f6244d9c3dfbb37b0be48367d0ff2688b734e65564bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Clinical Protocols</topic><topic>Clinical Trials as Topic</topic><topic>Data Interpretation, Statistical</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Linear Models</topic><topic>Proportional Hazards Models</topic><topic>Random Allocation</topic><topic>Research Design</topic><topic>Stochastic Processes</topic><topic>Survival Rate</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, K. K. Gordon</creatorcontrib><creatorcontrib>Zucker, David M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, K. K. Gordon</au><au>Zucker, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential monitoring of clinical trials: The role of information and brownian motion</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>1993-04-30</date><risdate>1993</risdate><volume>12</volume><issue>8</issue><spage>753</spage><epage>765</epage><pages>753-765</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Sequential monitoring has been a topic of major interest in clinical trials methodology over the past two decades. This paper presents a unified conceptual framework for sequential monitoring that covers a wide variety of monitoring procedures in a wide variety of clinical trial settings. The central elements of this framework consist of a suitable concept of statistical information and a scheme for using this concept as a basis for summarizing the accumulating results of a trial in a standardized form, through a stochastic process that can be shown to approximate classical Brownian motion. The ideas are developed in a simple step‐by‐step fashion and illustrated by several practical examples.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8516592</pmid><doi>10.1002/sim.4780120804</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 1993-04, Vol.12 (8), p.753-765 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_75783595 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Biophysical Phenomena Biophysics Clinical Protocols Clinical Trials as Topic Data Interpretation, Statistical Humans Likelihood Functions Linear Models Proportional Hazards Models Random Allocation Research Design Stochastic Processes Survival Rate Time Factors |
title | Sequential monitoring of clinical trials: The role of information and brownian motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20monitoring%20of%20clinical%20trials:%20The%20role%20of%20information%20and%20brownian%20motion&rft.jtitle=Statistics%20in%20medicine&rft.au=Lan,%20K.%20K.%20Gordon&rft.date=1993-04-30&rft.volume=12&rft.issue=8&rft.spage=753&rft.epage=765&rft.pages=753-765&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.4780120804&rft_dat=%3Cproquest_cross%3E75783595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75783595&rft_id=info:pmid/8516592&rfr_iscdi=true |