Structural investigation of chondroitin/dermatan sulfate oligosaccharides from human skin fibroblast decorin
Hybrid chondroitin/dermatan sulfate (CS/DS) glycosaminoglycan chains, derived from decorin secreted by human skin fibroblasts, were shown to interact with FGF-2, as did oligosaccharides derived therefrom by chondroitin B lyase digestion. In a first attempt to identify the biologically active sequenc...
Gespeichert in:
Veröffentlicht in: | Glycobiology (Oxford) 2003-11, Vol.13 (11), p.733-742 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hybrid chondroitin/dermatan sulfate (CS/DS) glycosaminoglycan chains, derived from decorin secreted by human skin fibroblasts, were shown to interact with FGF-2, as did oligosaccharides derived therefrom by chondroitin B lyase digestion. In a first attempt to identify the biologically active sequence, a novel protocol for structural analysis of enzyme-resistant oligosaccharides larger than standard trisulfated hexasaccharides was developed. The method bases on capillary electrophoresis (CE) for separating oversulfated species in offline combination with nanoelectrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoESI-QTOF-MS/MS) in the negative ion mode. Under optimized CE and ESI-MS conditions, up to 12-mer oligosaccharides with different degrees of sulfation were identified. A novel tandem MS protocol (CID-VE) was applied to elucidate the structure of a previously undescribed pentasulfated CS/DS hexasaccharide, Δ-4,5-IdoAGalNAc[GlcAGalNAc]2(5S). In this molecular species, detected as a triply charged ion at m/z 511.38, three sulfates are found in the IdoAGalNAcGlcA moiety offering two structural variants: one containing sulfated IdoA together with a disulfated GalNAc moiety and in the other one both uronic acids, that is, GlcA and IdoA and the amino sugar each carry a sulfate ester group. |
---|---|
ISSN: | 0959-6658 1460-2423 |
DOI: | 10.1093/glycob/cwg086 |