Phosphorus Retention Mechanisms of a Water Treatment Residual

ABSTRACT Water treatment residuals (WTRs) are a by‐product of municipal drinking water treatment plants and can have the capacity to adsorb tremendous amounts of P. Understanding the WTR phosphorus adsorption process is important for discerning the mechanism and tenacity of P retention. We studied P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental quality 2003-09, Vol.32 (5), p.1857-1864
Hauptverfasser: Ippolito, J. A., Barbarick, K. A., Heil, D. M., Chandler, J. P., Redente, E. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1864
container_issue 5
container_start_page 1857
container_title Journal of environmental quality
container_volume 32
creator Ippolito, J. A.
Barbarick, K. A.
Heil, D. M.
Chandler, J. P.
Redente, E. F.
description ABSTRACT Water treatment residuals (WTRs) are a by‐product of municipal drinking water treatment plants and can have the capacity to adsorb tremendous amounts of P. Understanding the WTR phosphorus adsorption process is important for discerning the mechanism and tenacity of P retention. We studied P adsorbing mechanism(s) of an aluminum‐based [Al2(SO4)3·14H2O] WTR from Englewood, CO. In a laboratory study, we shook mixtures of P‐loaded WTR for 1 to 211 d followed by solution pH analysis, and solution Ca, Al, and P analysis via inductively coupled plasma atomic emission spectroscopy. After shaking periods, we also examined the solids fraction by X‐ray diffraction (XRD) and electron microprobe analysis using wavelength dispersive spectroscopy (EMPA–WDS). The shaking results indicated an increase in pH from 7.2 to 8.2, an increase in desorbed Ca and Al concentrations, and a decrease in desorbed P concentration. The pH and desorbed Ca concentration increases suggested that CaCO3 controlled Ca solubility. Increased desorbed Al concentration may have been due to Al OH −4 formation. Decreased P content, in conjunction with the pH increase, was consistent with calcium phosphate formation or precipitation. The system appeared to be undersaturated with respect to dicalcium phosphate (DCP; CaHPO4) and supersaturated with respect to octacalcium phosphate [OCP; Ca4H(PO4)3·2.5H2O]. The Ca and Al increases, as well as OCP formation, were supported by MINTEQA2 modeling. The XRD and EMPA–WDS results for all shaking times, however, suggested surface P chemisorption as an amorphous Al–P mineral phase.
doi_str_mv 10.2134/jeq2003.1857
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75754023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75754023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4897-b3f4414a4109aa868401b9af9c9db78bbabdc8479c903267b0e6893eced049733</originalsourceid><addsrcrecordid>eNqF0Utr3DAUBWARWpJpkl3XxRTSVZ1cSVeWtcgiDGnTkpIHCVkKWZYZD37MSDYl_75yxhDIollYlsTHkcQh5DOFU0Y5nq3dlgHwU5oLuUcWVHCZsjh8IAsAjHNk4oB8CmENQBnIbJ8cUBRccA4Lcn676sNm1fsxJPducN1Q913yx9mV6erQhqSvEpM8mcH55ME7M7SRRBnqcjTNEflYmSa44_l_SB5_XD4sr9Lrm5-_lhfXqcVcybTgFSJFgxSUMXmWI9BCmUpZVRYyLwpTlDZHGdfAWSYLcFmuuLOuBFSS80PybZe78f12dGHQbR2saxrTuX4MWgopENj7kGY0U0yw9yFmkivECL--get-9F18raZKIkjJp7TvO2R9H4J3ld74ujX-WVPQU0t6bklPLUX-Zc4ci9aVr3iuJYKTGZhgTVN509k6vDpBOVCYgtTO_a0b9_zfQ_Xvyzs2fXHj5RL_AEP3qMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197407732</pqid></control><display><type>article</type><title>Phosphorus Retention Mechanisms of a Water Treatment Residual</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ippolito, J. A. ; Barbarick, K. A. ; Heil, D. M. ; Chandler, J. P. ; Redente, E. F.</creator><creatorcontrib>Ippolito, J. A. ; Barbarick, K. A. ; Heil, D. M. ; Chandler, J. P. ; Redente, E. F.</creatorcontrib><description>ABSTRACT Water treatment residuals (WTRs) are a by‐product of municipal drinking water treatment plants and can have the capacity to adsorb tremendous amounts of P. Understanding the WTR phosphorus adsorption process is important for discerning the mechanism and tenacity of P retention. We studied P adsorbing mechanism(s) of an aluminum‐based [Al2(SO4)3·14H2O] WTR from Englewood, CO. In a laboratory study, we shook mixtures of P‐loaded WTR for 1 to 211 d followed by solution pH analysis, and solution Ca, Al, and P analysis via inductively coupled plasma atomic emission spectroscopy. After shaking periods, we also examined the solids fraction by X‐ray diffraction (XRD) and electron microprobe analysis using wavelength dispersive spectroscopy (EMPA–WDS). The shaking results indicated an increase in pH from 7.2 to 8.2, an increase in desorbed Ca and Al concentrations, and a decrease in desorbed P concentration. The pH and desorbed Ca concentration increases suggested that CaCO3 controlled Ca solubility. Increased desorbed Al concentration may have been due to Al OH −4 formation. Decreased P content, in conjunction with the pH increase, was consistent with calcium phosphate formation or precipitation. The system appeared to be undersaturated with respect to dicalcium phosphate (DCP; CaHPO4) and supersaturated with respect to octacalcium phosphate [OCP; Ca4H(PO4)3·2.5H2O]. The Ca and Al increases, as well as OCP formation, were supported by MINTEQA2 modeling. The XRD and EMPA–WDS results for all shaking times, however, suggested surface P chemisorption as an amorphous Al–P mineral phase.</description><identifier>ISSN: 0047-2425</identifier><identifier>EISSN: 1537-2537</identifier><identifier>DOI: 10.2134/jeq2003.1857</identifier><identifier>PMID: 14535330</identifier><identifier>CODEN: JEVQAA</identifier><language>eng</language><publisher>Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society</publisher><subject>Adsorption ; Agronomy. Soil science and plant productions ; Aluminum ; Aluminum - chemistry ; Aluminum sulfate ; Applied sciences ; Biological and medical sciences ; Calcium Carbonate - chemistry ; Calcium phosphates ; Chemical industry and chemicals ; Drinking water ; Drinking water and swimming-pool water. Desalination ; Emission spectroscopy ; Exact sciences and technology ; Fertilisers ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Hydrogen-Ion Concentration ; Industrial chemicals ; Nitrogen, phosphorus, potassium fertilizations ; Phosphates - chemistry ; Phosphorus - analysis ; Phosphorus - isolation &amp; purification ; Phosphorus fertilization ; Pollution ; Retention ; Soil-plant relationships. Soil fertility. Fertilization. Amendments ; Solubility ; Waste Disposal, Fluid - methods ; Water Supply ; Water treatment ; Water treatment and pollution ; Water treatment plants ; X-ray diffraction</subject><ispartof>Journal of environmental quality, 2003-09, Vol.32 (5), p.1857-1864</ispartof><rights>ASA, CSSA, SSSA</rights><rights>2004 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Sep/Oct 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4897-b3f4414a4109aa868401b9af9c9db78bbabdc8479c903267b0e6893eced049733</citedby><cites>FETCH-LOGICAL-c4897-b3f4414a4109aa868401b9af9c9db78bbabdc8479c903267b0e6893eced049733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fjeq2003.1857$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fjeq2003.1857$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15130107$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14535330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ippolito, J. A.</creatorcontrib><creatorcontrib>Barbarick, K. A.</creatorcontrib><creatorcontrib>Heil, D. M.</creatorcontrib><creatorcontrib>Chandler, J. P.</creatorcontrib><creatorcontrib>Redente, E. F.</creatorcontrib><title>Phosphorus Retention Mechanisms of a Water Treatment Residual</title><title>Journal of environmental quality</title><addtitle>J Environ Qual</addtitle><description>ABSTRACT Water treatment residuals (WTRs) are a by‐product of municipal drinking water treatment plants and can have the capacity to adsorb tremendous amounts of P. Understanding the WTR phosphorus adsorption process is important for discerning the mechanism and tenacity of P retention. We studied P adsorbing mechanism(s) of an aluminum‐based [Al2(SO4)3·14H2O] WTR from Englewood, CO. In a laboratory study, we shook mixtures of P‐loaded WTR for 1 to 211 d followed by solution pH analysis, and solution Ca, Al, and P analysis via inductively coupled plasma atomic emission spectroscopy. After shaking periods, we also examined the solids fraction by X‐ray diffraction (XRD) and electron microprobe analysis using wavelength dispersive spectroscopy (EMPA–WDS). The shaking results indicated an increase in pH from 7.2 to 8.2, an increase in desorbed Ca and Al concentrations, and a decrease in desorbed P concentration. The pH and desorbed Ca concentration increases suggested that CaCO3 controlled Ca solubility. Increased desorbed Al concentration may have been due to Al OH −4 formation. Decreased P content, in conjunction with the pH increase, was consistent with calcium phosphate formation or precipitation. The system appeared to be undersaturated with respect to dicalcium phosphate (DCP; CaHPO4) and supersaturated with respect to octacalcium phosphate [OCP; Ca4H(PO4)3·2.5H2O]. The Ca and Al increases, as well as OCP formation, were supported by MINTEQA2 modeling. The XRD and EMPA–WDS results for all shaking times, however, suggested surface P chemisorption as an amorphous Al–P mineral phase.</description><subject>Adsorption</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Aluminum</subject><subject>Aluminum - chemistry</subject><subject>Aluminum sulfate</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Calcium Carbonate - chemistry</subject><subject>Calcium phosphates</subject><subject>Chemical industry and chemicals</subject><subject>Drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Emission spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Fertilisers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial chemicals</subject><subject>Nitrogen, phosphorus, potassium fertilizations</subject><subject>Phosphates - chemistry</subject><subject>Phosphorus - analysis</subject><subject>Phosphorus - isolation &amp; purification</subject><subject>Phosphorus fertilization</subject><subject>Pollution</subject><subject>Retention</subject><subject>Soil-plant relationships. Soil fertility. Fertilization. Amendments</subject><subject>Solubility</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Water Supply</subject><subject>Water treatment</subject><subject>Water treatment and pollution</subject><subject>Water treatment plants</subject><subject>X-ray diffraction</subject><issn>0047-2425</issn><issn>1537-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0Utr3DAUBWARWpJpkl3XxRTSVZ1cSVeWtcgiDGnTkpIHCVkKWZYZD37MSDYl_75yxhDIollYlsTHkcQh5DOFU0Y5nq3dlgHwU5oLuUcWVHCZsjh8IAsAjHNk4oB8CmENQBnIbJ8cUBRccA4Lcn676sNm1fsxJPducN1Q913yx9mV6erQhqSvEpM8mcH55ME7M7SRRBnqcjTNEflYmSa44_l_SB5_XD4sr9Lrm5-_lhfXqcVcybTgFSJFgxSUMXmWI9BCmUpZVRYyLwpTlDZHGdfAWSYLcFmuuLOuBFSS80PybZe78f12dGHQbR2saxrTuX4MWgopENj7kGY0U0yw9yFmkivECL--get-9F18raZKIkjJp7TvO2R9H4J3ld74ujX-WVPQU0t6bklPLUX-Zc4ci9aVr3iuJYKTGZhgTVN509k6vDpBOVCYgtTO_a0b9_zfQ_Xvyzs2fXHj5RL_AEP3qMI</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>Ippolito, J. A.</creator><creator>Barbarick, K. A.</creator><creator>Heil, D. M.</creator><creator>Chandler, J. P.</creator><creator>Redente, E. F.</creator><general>American Society of Agronomy, Crop Science Society of America, Soil Science Society</general><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>7X8</scope></search><sort><creationdate>200309</creationdate><title>Phosphorus Retention Mechanisms of a Water Treatment Residual</title><author>Ippolito, J. A. ; Barbarick, K. A. ; Heil, D. M. ; Chandler, J. P. ; Redente, E. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4897-b3f4414a4109aa868401b9af9c9db78bbabdc8479c903267b0e6893eced049733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adsorption</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Aluminum</topic><topic>Aluminum - chemistry</topic><topic>Aluminum sulfate</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Calcium Carbonate - chemistry</topic><topic>Calcium phosphates</topic><topic>Chemical industry and chemicals</topic><topic>Drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Emission spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Fertilisers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial chemicals</topic><topic>Nitrogen, phosphorus, potassium fertilizations</topic><topic>Phosphates - chemistry</topic><topic>Phosphorus - analysis</topic><topic>Phosphorus - isolation &amp; purification</topic><topic>Phosphorus fertilization</topic><topic>Pollution</topic><topic>Retention</topic><topic>Soil-plant relationships. Soil fertility. Fertilization. Amendments</topic><topic>Solubility</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Water Supply</topic><topic>Water treatment</topic><topic>Water treatment and pollution</topic><topic>Water treatment plants</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ippolito, J. A.</creatorcontrib><creatorcontrib>Barbarick, K. A.</creatorcontrib><creatorcontrib>Heil, D. M.</creatorcontrib><creatorcontrib>Chandler, J. P.</creatorcontrib><creatorcontrib>Redente, E. F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of environmental quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ippolito, J. A.</au><au>Barbarick, K. A.</au><au>Heil, D. M.</au><au>Chandler, J. P.</au><au>Redente, E. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorus Retention Mechanisms of a Water Treatment Residual</atitle><jtitle>Journal of environmental quality</jtitle><addtitle>J Environ Qual</addtitle><date>2003-09</date><risdate>2003</risdate><volume>32</volume><issue>5</issue><spage>1857</spage><epage>1864</epage><pages>1857-1864</pages><issn>0047-2425</issn><eissn>1537-2537</eissn><coden>JEVQAA</coden><abstract>ABSTRACT Water treatment residuals (WTRs) are a by‐product of municipal drinking water treatment plants and can have the capacity to adsorb tremendous amounts of P. Understanding the WTR phosphorus adsorption process is important for discerning the mechanism and tenacity of P retention. We studied P adsorbing mechanism(s) of an aluminum‐based [Al2(SO4)3·14H2O] WTR from Englewood, CO. In a laboratory study, we shook mixtures of P‐loaded WTR for 1 to 211 d followed by solution pH analysis, and solution Ca, Al, and P analysis via inductively coupled plasma atomic emission spectroscopy. After shaking periods, we also examined the solids fraction by X‐ray diffraction (XRD) and electron microprobe analysis using wavelength dispersive spectroscopy (EMPA–WDS). The shaking results indicated an increase in pH from 7.2 to 8.2, an increase in desorbed Ca and Al concentrations, and a decrease in desorbed P concentration. The pH and desorbed Ca concentration increases suggested that CaCO3 controlled Ca solubility. Increased desorbed Al concentration may have been due to Al OH −4 formation. Decreased P content, in conjunction with the pH increase, was consistent with calcium phosphate formation or precipitation. The system appeared to be undersaturated with respect to dicalcium phosphate (DCP; CaHPO4) and supersaturated with respect to octacalcium phosphate [OCP; Ca4H(PO4)3·2.5H2O]. The Ca and Al increases, as well as OCP formation, were supported by MINTEQA2 modeling. The XRD and EMPA–WDS results for all shaking times, however, suggested surface P chemisorption as an amorphous Al–P mineral phase.</abstract><cop>Madison</cop><pub>American Society of Agronomy, Crop Science Society of America, Soil Science Society</pub><pmid>14535330</pmid><doi>10.2134/jeq2003.1857</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0047-2425
ispartof Journal of environmental quality, 2003-09, Vol.32 (5), p.1857-1864
issn 0047-2425
1537-2537
language eng
recordid cdi_proquest_miscellaneous_75754023
source MEDLINE; Access via Wiley Online Library
subjects Adsorption
Agronomy. Soil science and plant productions
Aluminum
Aluminum - chemistry
Aluminum sulfate
Applied sciences
Biological and medical sciences
Calcium Carbonate - chemistry
Calcium phosphates
Chemical industry and chemicals
Drinking water
Drinking water and swimming-pool water. Desalination
Emission spectroscopy
Exact sciences and technology
Fertilisers
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Hydrogen-Ion Concentration
Industrial chemicals
Nitrogen, phosphorus, potassium fertilizations
Phosphates - chemistry
Phosphorus - analysis
Phosphorus - isolation & purification
Phosphorus fertilization
Pollution
Retention
Soil-plant relationships. Soil fertility. Fertilization. Amendments
Solubility
Waste Disposal, Fluid - methods
Water Supply
Water treatment
Water treatment and pollution
Water treatment plants
X-ray diffraction
title Phosphorus Retention Mechanisms of a Water Treatment Residual
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorus%20Retention%20Mechanisms%20of%20a%20Water%20Treatment%20Residual&rft.jtitle=Journal%20of%20environmental%20quality&rft.au=Ippolito,%20J.%20A.&rft.date=2003-09&rft.volume=32&rft.issue=5&rft.spage=1857&rft.epage=1864&rft.pages=1857-1864&rft.issn=0047-2425&rft.eissn=1537-2537&rft.coden=JEVQAA&rft_id=info:doi/10.2134/jeq2003.1857&rft_dat=%3Cproquest_cross%3E75754023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197407732&rft_id=info:pmid/14535330&rfr_iscdi=true