Functional brain imaging of olfactory processing in monkeys

As a step toward bridging the gap between human and animal studies of olfactory brain systems, we report results from an fMRI study of olfaction in squirrel monkeys. High-resolution fMRI images at 3 T with 1.25 × 1.25 × 1.2 mm 3 voxels were obtained covering the whole brain using an 8-cm-diameter bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2003-09, Vol.20 (1), p.257-264
Hauptverfasser: Boyett-Anderson, J.M, Lyons, D.M, Reiss, A.L, Schatzberg, A.F, Menon, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 1
container_start_page 257
container_title NeuroImage (Orlando, Fla.)
container_volume 20
creator Boyett-Anderson, J.M
Lyons, D.M
Reiss, A.L
Schatzberg, A.F
Menon, V
description As a step toward bridging the gap between human and animal studies of olfactory brain systems, we report results from an fMRI study of olfaction in squirrel monkeys. High-resolution fMRI images at 3 T with 1.25 × 1.25 × 1.2 mm 3 voxels were obtained covering the whole brain using an 8-cm-diameter birdcage coil and a gradient–echo spiral pulse sequence. Data were acquired from six sedated adult males using a standard block design. All fMRI data were spatially normalized to a common template and analyzed at the individual and group levels with statistical parametric and nonparametric methods. Robust odorant-induced activations were detected in several brain regions previously implicated in conscious human olfactory processing, including the orbitofrontal cortex, cerebellum, and piriform cortex. Consistent with human data, no stimulus intensity effects were observed in any of these regions. Average signal changes in these regions exceeded 0.6%, more than three times the expected signal change based on human fMRI studies of olfaction adjusting for differences in voxel size. These results demonstrate the feasibility of studying olfaction in sedated monkeys with imaging techniques commonly used at 3 T in humans and help promote direct comparisons between humans and nonhuman primates. Our findings, for example, provide novel support for the hypothesis that the cerebellum is involved in sensory acquisition. More broadly, this study suggests that olfactory processing in sedated monkeys and nonsedated humans shares similar neural substrates both within and beyond the primary olfactory system.
doi_str_mv 10.1016/S1053-8119(03)00288-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75746969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381190300288X</els_id><sourcerecordid>3244202671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-8f631693a8e79abfe018af2d7bf757e7723705cbb258e17f58caad8e65157bdb3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMofqz-BKUgiB6qmbb5KB5ExFVB8KCCt5CmE4l2G01aYf-9WXdB8OJpwvDMO5mHkH2gp0CBnz0CZWUuAepjWp5QWkiZv6yRbaA1y2smivXFe4VskZ0Y3yilNVRyk2xBxQrBJN8m59OxN4Pzve6yJmjXZ26mX13_mnmb-c5qM_gwzz6CNxjjop-Qme_fcR53yYbVXcS9VZ2Q5-n109Vtfv9wc3d1eZ-bqoIhl5aXwOtSSxS1bixSkNoWrWisYAKFKEpBmWmagkkEYZk0WrcSOQMmmrYpJ-RomZt-8TliHNTMRYNdp3v0Y1QppeJ12jAhh3_ANz-GdFpUwCjnFICLRLElZYKPMaBVHyEdHeYKqFq4VT9u1UKcoqX6cate0tzBKn1sZtj-Tq1kJuBiCWCS8eUwqGgc9gZbF9AMqvXunxXf4nyIig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506601167</pqid></control><display><type>article</type><title>Functional brain imaging of olfactory processing in monkeys</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Boyett-Anderson, J.M ; Lyons, D.M ; Reiss, A.L ; Schatzberg, A.F ; Menon, V</creator><creatorcontrib>Boyett-Anderson, J.M ; Lyons, D.M ; Reiss, A.L ; Schatzberg, A.F ; Menon, V</creatorcontrib><description>As a step toward bridging the gap between human and animal studies of olfactory brain systems, we report results from an fMRI study of olfaction in squirrel monkeys. High-resolution fMRI images at 3 T with 1.25 × 1.25 × 1.2 mm 3 voxels were obtained covering the whole brain using an 8-cm-diameter birdcage coil and a gradient–echo spiral pulse sequence. Data were acquired from six sedated adult males using a standard block design. All fMRI data were spatially normalized to a common template and analyzed at the individual and group levels with statistical parametric and nonparametric methods. Robust odorant-induced activations were detected in several brain regions previously implicated in conscious human olfactory processing, including the orbitofrontal cortex, cerebellum, and piriform cortex. Consistent with human data, no stimulus intensity effects were observed in any of these regions. Average signal changes in these regions exceeded 0.6%, more than three times the expected signal change based on human fMRI studies of olfaction adjusting for differences in voxel size. These results demonstrate the feasibility of studying olfaction in sedated monkeys with imaging techniques commonly used at 3 T in humans and help promote direct comparisons between humans and nonhuman primates. Our findings, for example, provide novel support for the hypothesis that the cerebellum is involved in sensory acquisition. More broadly, this study suggests that olfactory processing in sedated monkeys and nonsedated humans shares similar neural substrates both within and beyond the primary olfactory system.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/S1053-8119(03)00288-X</identifier><identifier>PMID: 14527586</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animal cognition ; Animals ; Brain ; Brain - physiology ; Brain research ; Cerebellum ; Conscious Sedation ; Consciousness ; fMRI ; Fourier Analysis ; Image Processing, Computer-Assisted ; Laboratory animals ; Magnetic Resonance Imaging ; Male ; Medical imaging ; NMR ; Nuclear magnetic resonance ; Odorants ; Olfaction ; Orbitofrontal cortex ; Pilot Projects ; Saimiri ; Scanners ; Sedation ; Smell - physiology ; Squirrel monkey ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2003-09, Vol.20 (1), p.257-264</ispartof><rights>2003 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Sep 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-8f631693a8e79abfe018af2d7bf757e7723705cbb258e17f58caad8e65157bdb3</citedby><cites>FETCH-LOGICAL-c441t-8f631693a8e79abfe018af2d7bf757e7723705cbb258e17f58caad8e65157bdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506601167?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14527586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyett-Anderson, J.M</creatorcontrib><creatorcontrib>Lyons, D.M</creatorcontrib><creatorcontrib>Reiss, A.L</creatorcontrib><creatorcontrib>Schatzberg, A.F</creatorcontrib><creatorcontrib>Menon, V</creatorcontrib><title>Functional brain imaging of olfactory processing in monkeys</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>As a step toward bridging the gap between human and animal studies of olfactory brain systems, we report results from an fMRI study of olfaction in squirrel monkeys. High-resolution fMRI images at 3 T with 1.25 × 1.25 × 1.2 mm 3 voxels were obtained covering the whole brain using an 8-cm-diameter birdcage coil and a gradient–echo spiral pulse sequence. Data were acquired from six sedated adult males using a standard block design. All fMRI data were spatially normalized to a common template and analyzed at the individual and group levels with statistical parametric and nonparametric methods. Robust odorant-induced activations were detected in several brain regions previously implicated in conscious human olfactory processing, including the orbitofrontal cortex, cerebellum, and piriform cortex. Consistent with human data, no stimulus intensity effects were observed in any of these regions. Average signal changes in these regions exceeded 0.6%, more than three times the expected signal change based on human fMRI studies of olfaction adjusting for differences in voxel size. These results demonstrate the feasibility of studying olfaction in sedated monkeys with imaging techniques commonly used at 3 T in humans and help promote direct comparisons between humans and nonhuman primates. Our findings, for example, provide novel support for the hypothesis that the cerebellum is involved in sensory acquisition. More broadly, this study suggests that olfactory processing in sedated monkeys and nonsedated humans shares similar neural substrates both within and beyond the primary olfactory system.</description><subject>Animal cognition</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>Cerebellum</subject><subject>Conscious Sedation</subject><subject>Consciousness</subject><subject>fMRI</subject><subject>Fourier Analysis</subject><subject>Image Processing, Computer-Assisted</subject><subject>Laboratory animals</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Odorants</subject><subject>Olfaction</subject><subject>Orbitofrontal cortex</subject><subject>Pilot Projects</subject><subject>Saimiri</subject><subject>Scanners</subject><subject>Sedation</subject><subject>Smell - physiology</subject><subject>Squirrel monkey</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LxDAQhoMofqz-BKUgiB6qmbb5KB5ExFVB8KCCt5CmE4l2G01aYf-9WXdB8OJpwvDMO5mHkH2gp0CBnz0CZWUuAepjWp5QWkiZv6yRbaA1y2smivXFe4VskZ0Y3yilNVRyk2xBxQrBJN8m59OxN4Pzve6yJmjXZ26mX13_mnmb-c5qM_gwzz6CNxjjop-Qme_fcR53yYbVXcS9VZ2Q5-n109Vtfv9wc3d1eZ-bqoIhl5aXwOtSSxS1bixSkNoWrWisYAKFKEpBmWmagkkEYZk0WrcSOQMmmrYpJ-RomZt-8TliHNTMRYNdp3v0Y1QppeJ12jAhh3_ANz-GdFpUwCjnFICLRLElZYKPMaBVHyEdHeYKqFq4VT9u1UKcoqX6cate0tzBKn1sZtj-Tq1kJuBiCWCS8eUwqGgc9gZbF9AMqvXunxXf4nyIig</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Boyett-Anderson, J.M</creator><creator>Lyons, D.M</creator><creator>Reiss, A.L</creator><creator>Schatzberg, A.F</creator><creator>Menon, V</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030901</creationdate><title>Functional brain imaging of olfactory processing in monkeys</title><author>Boyett-Anderson, J.M ; Lyons, D.M ; Reiss, A.L ; Schatzberg, A.F ; Menon, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-8f631693a8e79abfe018af2d7bf757e7723705cbb258e17f58caad8e65157bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal cognition</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>Cerebellum</topic><topic>Conscious Sedation</topic><topic>Consciousness</topic><topic>fMRI</topic><topic>Fourier Analysis</topic><topic>Image Processing, Computer-Assisted</topic><topic>Laboratory animals</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Odorants</topic><topic>Olfaction</topic><topic>Orbitofrontal cortex</topic><topic>Pilot Projects</topic><topic>Saimiri</topic><topic>Scanners</topic><topic>Sedation</topic><topic>Smell - physiology</topic><topic>Squirrel monkey</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyett-Anderson, J.M</creatorcontrib><creatorcontrib>Lyons, D.M</creatorcontrib><creatorcontrib>Reiss, A.L</creatorcontrib><creatorcontrib>Schatzberg, A.F</creatorcontrib><creatorcontrib>Menon, V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyett-Anderson, J.M</au><au>Lyons, D.M</au><au>Reiss, A.L</au><au>Schatzberg, A.F</au><au>Menon, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional brain imaging of olfactory processing in monkeys</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>20</volume><issue>1</issue><spage>257</spage><epage>264</epage><pages>257-264</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>As a step toward bridging the gap between human and animal studies of olfactory brain systems, we report results from an fMRI study of olfaction in squirrel monkeys. High-resolution fMRI images at 3 T with 1.25 × 1.25 × 1.2 mm 3 voxels were obtained covering the whole brain using an 8-cm-diameter birdcage coil and a gradient–echo spiral pulse sequence. Data were acquired from six sedated adult males using a standard block design. All fMRI data were spatially normalized to a common template and analyzed at the individual and group levels with statistical parametric and nonparametric methods. Robust odorant-induced activations were detected in several brain regions previously implicated in conscious human olfactory processing, including the orbitofrontal cortex, cerebellum, and piriform cortex. Consistent with human data, no stimulus intensity effects were observed in any of these regions. Average signal changes in these regions exceeded 0.6%, more than three times the expected signal change based on human fMRI studies of olfaction adjusting for differences in voxel size. These results demonstrate the feasibility of studying olfaction in sedated monkeys with imaging techniques commonly used at 3 T in humans and help promote direct comparisons between humans and nonhuman primates. Our findings, for example, provide novel support for the hypothesis that the cerebellum is involved in sensory acquisition. More broadly, this study suggests that olfactory processing in sedated monkeys and nonsedated humans shares similar neural substrates both within and beyond the primary olfactory system.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>14527586</pmid><doi>10.1016/S1053-8119(03)00288-X</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2003-09, Vol.20 (1), p.257-264
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_75746969
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Animal cognition
Animals
Brain
Brain - physiology
Brain research
Cerebellum
Conscious Sedation
Consciousness
fMRI
Fourier Analysis
Image Processing, Computer-Assisted
Laboratory animals
Magnetic Resonance Imaging
Male
Medical imaging
NMR
Nuclear magnetic resonance
Odorants
Olfaction
Orbitofrontal cortex
Pilot Projects
Saimiri
Scanners
Sedation
Smell - physiology
Squirrel monkey
Studies
title Functional brain imaging of olfactory processing in monkeys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20brain%20imaging%20of%20olfactory%20processing%20in%20monkeys&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Boyett-Anderson,%20J.M&rft.date=2003-09-01&rft.volume=20&rft.issue=1&rft.spage=257&rft.epage=264&rft.pages=257-264&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/S1053-8119(03)00288-X&rft_dat=%3Cproquest_cross%3E3244202671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506601167&rft_id=info:pmid/14527586&rft_els_id=S105381190300288X&rfr_iscdi=true