Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression

Early B-cell factor (EBF) was identified previously as a tissue-specific and differentiation stage-specific DNA-binding protein that participates in the regulation of the pre-B and B lymphocyte-specific mb-1 gene. Partial amino acid sequences obtained from purified EBF were used to isolate cDNA clon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 1993-05, Vol.7 (5), p.760-773
Hauptverfasser: HAGMAN, J, BELANGER, C, TRAVIS, A, TURCK, C. W, GROSSCHEDL, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early B-cell factor (EBF) was identified previously as a tissue-specific and differentiation stage-specific DNA-binding protein that participates in the regulation of the pre-B and B lymphocyte-specific mb-1 gene. Partial amino acid sequences obtained from purified EBF were used to isolate cDNA clones, which by multiple criteria encode EBF. The recombinant polypeptide formed sequence-specific complexes with the EBF-binding site in the mb-1 promoter. The cDNA hybridized to multiple transcripts in pre-B and B-cell lines, but transcripts were not detected at significant levels in plasmacytoma, T-cell, and nonlymphoid cell lines. Expression of recombinant EBF in transfected nonlymphoid cells strongly activated transcription from reporter plasmids containing functional EBF-binding sites. Analysis of DNA binding by deletion mutants of EBF identified an amino-terminal cysteine-rich DNA-binding domain lacking obvious sequence similarity to known transcription factors. DNA-binding assays with cotranslated wild-type and truncated forms of EBF indicated that the protein interacts with its site as a homodimer. Deletions delineated a carboxy-terminal dimerization region containing two repeats of 15 amino acids that show similarity with the dimerization domains of basic-helix-loop-helix proteins. Together, these data suggest that EBF represents a novel regulator of B lymphocyte-specific gene expression.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.7.5.760